导航:首页 > 数字科学 > 数学如何实现初中到高中的平稳过渡

数学如何实现初中到高中的平稳过渡

发布时间:2023-05-30 08:22:18

⑴ 高一新生如何做好初三和高一的数学衔接

做好初高中数学学习的衔接
近年的调查资料显示:一部分学生在升入高一以后,数学成绩很容易出现严重的滑坡,其中也不乏初中的数学尖子。部分学生认轿腊卖为:"我在数学上已投入了大量的精力和时间,但高中数学实在太难了",导致对学好高中数学失去了信心。
造成这样的原因,主要是初中数学和高中数学存在着巨大的差异,而部分学生又没有为此做好充分的准备,从而导致初高中的衔接不好,产生了以上的问题。
1、知识内容上的差异
初中数学知识少、浅、难度容易、知识面窄。高中数学知识广泛,既是对初中数学知识的推广和引伸,也是对初中数学知识的完善,它抽象性、理论性更强,尤其是在高一,首先碰到的就是理论性、抽象性很强的集合、函数等概念,使一些初中数学基础很好的学生也难以适应。
2、思维方法上的差异
初中数学的思维方法更趋向于形象和合情,而高中数学的思维方法更趋向于抽象和理性,对数学思想、数学方法的要求较高,要求学生能从多角度、多方面思考问题,在创新能力、应用意识上有更高的要求。初中数学中,题目、已知和结论用常数给出的较多,一般来讲,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。
1、做好思想上的准备
必须认识到,高中数学的难度有所增加,又由于一开始就是理论性、抽象性很强的集合、函数等概念,所以一方面,不能有丝毫的放松思想,觉得经过了一个苦难的初三,现在可以松口气了;另一方面,即使努力了,而考局岁试的分数却比初中有所下降,这也是正常的,不要惊慌失措,更不要失去信心,尤其是对于那些中考考得还不错的同学,更要有此思想准备,不要因此自暴自弃。 同时要树立信心,只要我们未雨绸缪,早做准备,就一定可以克服以上的困难。
2、做好学习方法上的准备
(1) 注意新旧知识的转化,形成新的系统。
人们学习的过程就是用掌握的知识去理解未知的知识,去解决新的问题。可见,学习就是不断地化归转化,不断地继承、发展、更新旧知识,形成新知识,构建新系统。因此,初中知识是基础,应在此基础上去学习高中的知识,并不断的对新旧知识进行整合,形成新的体系。
(2)注意在知识的学习中提炼、掌握数学思想方法。
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想做闭逗出归纳、概括是十分必要的。与高中数学有关的思想方法主要有四类:函数方程思想、数形结合思想、分类讨论思想和等价转化思想。数学方法大体上有:配方法、换元法、分析法、反证法、数学归纳法、解析法、待定系数法、定义法等等。
3、建立良好的数学学习习惯
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的数学学习习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。
在平时学习中注意做到:
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果索因把错误原因弄个水落石出、以便对症下药;解答问题完整,推理严密。
(3)记忆数学规律和数学小结论。
(4)与同学建立好关系,争做"小老师",形成数学学习"互助组".(5)反复巩固,消灭前学后忘。
(6)学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类。

⑵ 初中升高中过度阶段学习数学该怎么学习好

如何做好初中到高中数学学习的完美过渡!
我心飞扬6.

如何学好高中数学!良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。
高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

1.有良好的学习兴趣
——兴趣是学习的开端(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

2.高中数学应是:

——多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。
另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3.培养各方面的能力

——成绩是争取来的
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。如数学第二课堂、数学竞赛、智力竞赛等活动。
平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。
特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

4.思维灵活应用

——思想与方法
1、注意化归转化思想学习。 人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。
2、学会数学教材的数学思想方法。 数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。

5.关于数学的几个建议

——倦怠了定些小目标
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、记忆数学规律和数学小结论。
4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。
5、争做数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘。 7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

⑶ 初高中数学衔接教方法

教师们应该怎么样改进自己的 教学 方法 来促进学生们的数学学习呢?下面是我整理的初高中数学衔接教学方法以供大家阅读。
初高中数学衔接教学方法
1.缩写并使用衔接教材

初、高中数学教材中有许多知识点需要做好衔接工作颂早,如函数的概念、映射与对应等。其中有的是高中的新内容,有的是初中的旧知识,教学中不但 要注意对旧知识的复习,而且更应该讲清新旧知识的联系和区别,适当渗透转化和类比的数学思想和方法,帮助学生温故知新,实现由未知向已知的转化。从学生实 际出发,以“低起点,小步子,勤反馈,重矫正”的原则,编制适量习题,抚平初、高中数学习题的台阶。使学生由浅入深、循序渐进地掌握数学知识。

2.加强新课标的学习

加强学习高中新课标,深入研究教材,排查“盲区”要到位,解决学生知识衔接。教师应全面了解教材,明确各知识点。全面掌握新课程的知识体系,提高课堂教学针对性。

3.加强高初中教师的学术交流

为高、初中教师提供相互听课、评课、座谈的机会。加强学法指导的教学,并时刻渗透到教学的全过程中。请初中参加过课改的老师就初中课改情况及初中学法特点进行专题讲座。

4.日常教学研究教法,培养野渣雀能力

新课程标准要求我们在教学中充分体现“教师为主导,学生为主体”这一教学原则。要调动学生学习的积极性,使学生变被动学习为主动愉快的学习。

(1)放慢起始教学进度,逐步加快教学节奏

由于初中生习惯较慢的教学进度,因而若从一开始进度就较快,学生势必不能很好适应,极易影响教学效果。所以,高一起始教学进度应适当放慢,以后酌情加快,使学生逐步适应高中数

学教学的节奏。

(2)创设问题情境,揭示知识的形成发展过程

在数学知识的讲授过程中,不仅要让学生知其然,更应让学生知其所以然,高中数学教学尤其如此。这就要求高中教师在初、高中数学教学衔接时, 注意创设问题情境,讲清知识的来龙去脉,揭示新知识(概念、公式、定理、法则等)的提出过程,例题解法的探求过程,解题方法和规律的概括过程,使学生对所 学知识理解得更加深刻。

5.加强学法指导,培养学生良好的学习习惯,提高学习效率

高中许多知识仅凭课堂上听懂是远远不够的,还需要认真消化。这就要求学生具有较强的阅读分析能力和自学理解能力。因此,在初、高中数学教学衔接 中,教师要有意识地指导学生阅读数学课本,通过编拟阅读提纲,帮助学生理解和掌握数学概念,对某些简单章节内容的教学,可组织阅读讨论,以培养学生的自学 理解能力以及独立钻研问题的良好习惯。引导学生主动参与观察、实验、猜测、验证、推理与交流等数学活动,使学生形成有效的学习策略。
有关 高一数学 学习的几点小技巧的推荐
进入高一就遇到的是理论性很强的函数,再加上有时难以想象到的立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些原来初中数学学得不错的同学不能很快地适应而感到困难,我根据原来的学习中和现在的教学中的体会,提出几点学习高中数学的技巧,供大家一起分享。

转变观念

初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。

可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对梁缓于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。

学会听课

数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些:

1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。

2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。

当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。

3、敢于发表自己的想法,在高中数学学习中,学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,学生学习的效率也是很低的。

4、听好每一分钟,尤其是老师讲课的开头和结束

老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳 总结 ,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

课后巩固

很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。

做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。

学会看题

高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。

方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。

⑷ 如何采取有效措施搞好初高中数学衔接

1.搞好入学教育。
这是做好衔接的首要工作。能够提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,也能初步了解高中数学学习的特点,为其它措施的落实奠定基础,为此我们应做好三项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项。
2.高中教师要熟悉初中教材内容,做好教学内容的衔接。
新课程改革后,初中新教材在内容上进行了较大幅度的调整,有的内容删减了,有的在难度、深度和广度上降低了要求。如二次函数在初中降低了要求,十字相乘法等已基本不提,使得高一学生只要遇到解一元二次方程,就把繁琐的求根公式搬出来,这给高中数学的教学带来了麻烦。为此根据高一教材和大纲,制订出相应的教学计划,确定应采取的教学方法,做到有的放矢。
3.立足于高中大纲和教材,尊重学生实际,实行层次教学。
高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采取“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要处理和知识铺垫,注意教学内容和方法的衔接。
4.高中教师要加强学法指导,做好学生学习方法的衔接。
在初中,教师讲的细,类型归纳的全,反复练习。考试时,学生只要记忆概念、公式,及例题类型,一般都可以对号入座取得好成绩。因此,学生习惯于围着老师转,无需深入思考和对规律进行归纳总结。而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。所以高一学生往往用初中学法,致使学习出现困难,更没有预习、复习、总结等自我调整的时间。这些显然不利于良好学法和学习习惯的形成,高中教师可以通过以下途径衔接好学习方法:
重视学生良好的学习习惯培养
包括勤学好问、上课专心听讲、勤作笔记、提前预习及时复习、独立完成作业、书写规范整洁、独立思考以及全面细致的思考问题等良好习惯。
培养学生的自学能力
授人以“渔”,因材施“导”努力教会学生自学,培养自学能力是教之根本,而自学能力的提高有赖于阅读能力的培养。其次,要注意培养学生“捕捉”问题的能力。所谓捕捉问题,就是老师在课堂提出的设问或自己在预习中发现有价值的问题,都应积极去思考。
5.优化教育管理环节,促进初高中良好衔接。
搞好初高中衔接,除了优化教学环节外,还应充分发挥情感和心理的积极作用。我们在高一教学中,要注意运用情感和成功原理,调动学生学习热情,培养学习数学兴趣。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是困难生,帮助他们解决思想、学习及生活上存在的问题。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。
总之,高中数学的特点决定了高一学生在学习中困难大、挫折多。为此,我们在教学中应做好初高中数学教学的衔接,研究和解决初高中衔接教育,使得我们师生都能共同进步、共同发展。

⑸ 初中数学到高中数学如何顺利过渡

高一是数学学习的一个关键时期。许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上。对众多初中数学学习的成功者,进高中后数学成绩却不理想,数学学习缕受挫折,对学生弱小的心理产生巨大的创伤,加上这些同学不弊举了解高中数学的特点,学不得法,从而造成学习成绩的整体滑坡,甚至影响孩子的一生。随着学习的深入,数学成绩的分化是必然的,那么成绩落后的原因何在?学习数学有困难的新高一同学应怎样顺利度过适应期呢?
【原因一】高中数学与初中数学简兆相比,难度提高。因此会有少部分新高一生一时无法适应。表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。因此有些家长会认为孩子在初中数学考试都接近满分,怎么到了高中会考试不及格?!
高中的数学语言与初中有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。
高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。
高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。
应对方法:要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础上好问。
【原因二】初、高中不同学习阶段对数学的不同要求所致。高中考试平均分一般要求在70分左右。如果一个班有50名学生,通常会有10个以下不及格,90分以上人数较少。有些同学和家长不了解这些情况,租咐碧对初三时的成绩接近满分到高一开始时的不及格这个落差感到不可思议,重点中学的学生及其家长会特别有压力。
应对方法:看学生的成绩不能仅看分数值,关键要看在班级或年级的相对位置,同时还要看学生所在学校在全市所处的位置,综合考虑就会心理平衡,不必要的负担也就随之而去。
【原因三】学习方法的不适应。高中数学与初中相比,内容多、进度快、题目难,课堂听懂作业却常常磕磕绊绊,由于各科信息量都较大,如果不能有效地复习,前学后忘的现象比较严重。培养良好的学习方法和习惯,体会“死记硬背”与“活学活用”的区别。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课不能抓重点难点,不能体会思想方法,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,结果是事倍功半,收效甚微。
应对方法:课堂上不仅要听懂,还要把老师补充的内容适当地记下来,课后最好把所学的内容消化后再做作业,不要一边做题一边看笔记或看公式。课后尽可能再选择一些相关问题来练习,以便做到触类旁通。
【原因四】思想上有所放松。由于初三学习比较辛苦,到高一部分同学会有松口气的想法,因为离高考毕竟还有三年时间,尤其是初三靠拼命补课突击上来的部分同学,还指望“重温旧梦”,这是很危险的想法。如果高一基础太差,指望高三突击,实践表明多数同学会落空。部分智力较好的男生“恃才傲物”,解题只追求答案的正确性,书写不规范,考试时丢分严重。
经过升中考后,高一年级的学生有的思想开始松懈,尤其在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中同学,甚至错误的认为高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。而高中数学的难度远非初中数学能比,需要三年的艰苦努力,加上高考的内容源于课本而高于课本,具有很强的选拨性,想等到高三临考时再发奋一、二个月,其缺漏的很多知识是非常难完成的。
应对方法:高一的课程内容不得懈怠,函数知识贯穿于高中数学的始终,函数思想更是解决许多问题的利器,学好函数对整个高中数学都很重要,放松不得。在高一开始时养成勤奋、刻苦的学习态度,严谨、认真的学习习惯和方法非常重要。高中数学有十几章内容,高一数学主要是函数,有些同学函数学得不怎么好,但高二立体几何、解析几何却能学得不错,因此,一定要用变化的观点对待学生。鼓励和自信是永不失效的教育法宝。

⑹ 初高中数学衔接问题的几点思考

一、初高数学衔接势在必行
据我了解,很多名校很早就提出并着手解决初高数学衔接的问题,并且还开发了具体的校本教材。为什么初高数学衔接如此受到重视,显而易见,高一现在已真正成了学生学习数学的“困难期”,数学两极分化严重,相当一部分同学可能是人生中第一次丧失对数学的信心!第一次有自己是“数学差生”的感觉,并且我们还不能想当然的把“学好高中数学”仅仅定义为班上尖子生的特权,解决好初高数学衔接问题势在必行!
二、问题的根源在哪里?
(1)客观的说,初高中数学知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。
根据新课改的理念和课标要求,初中数学教材在难度、深度和广度上有所降低,体现了“浅、少、易”的特点,那些在高中学习中经常用到的知识有的被删除,有的淡化了要求,从而加重了高中数学的负担。就出现了学生在课堂上感觉到老师讲得太快,每节课的容量太大,要求太高,有些初中根本就没有学的知识和方法,在高中直接进行应用,让学生很茫然。
例如:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于系数为“1”的二次多项式,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材则应用广泛,如利用因式分解解方程和不等式,以及应用因式分解进行合理变形等。(到高中后,学生解一元二次方程大部分同学用的还是求根公式,不仅解题效率低,并且思维层次不高,不利用对某些含参数的方程进行根的分析)
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式(学生很陌生)、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。就拿图像的左右平移来说,学生只是在讲二次函数顶点式的时候通过定点坐标的变化来感受左右平移的规律,并未真正理解函数平移的本质,就拿一次函数的左右平移来说,学生大部分都不会,并且初中老师也不会去讲!这不属于考试内容,直接导致到高中后学生对f(x)和f(x+a)的关系弄不清,更谈不上数形结合了。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中念弯激这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
(2)高中数学的呈现方式以及思维方法和初中数学相比急剧突变
1、就呈现方式来说,初中数学教材新知识的引入与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握,而高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比闹凳较严谨、规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,体现了“起点高、难度大、容量多”的特点。这样,仔袜不可避免地造成了学生不适应高中数学学习的情况。
2.高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式,甚至已经产生了依赖心理。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。当然了,假如辩证的看待这个问题,高中数学思维方式的突变是符合学生心智发展规律的,高中生心智基本已经成熟,也需要从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。关键是老师如何引导学生实现平稳过渡。
(3)以上两方面的原因导致学生学习困难,从而心态也随之发生了变化,甚至某些学生产生了破罐破摔的想法,再加上老师的心理辅导不够及时,自我的调节能力又太弱,从而导致恶性循环发生,从此一蹶不振。
三、初高数学衔接实施的一些具体建议
1、在充分了解学生学情的基础上,编好 “衔接教材”,尽量做到有的放矢,实施过程中要把它当作实实在在的教学内容来讲,不能够轻描淡写!当然了,可以根据需要逐步渗透!
2、在高一刚开始授课时,尽量做到低起点、小步子,缓坡度,稳步子;夯实基础,降低难度,
3、严格控制难度,最大限度调动每个学生的积极性。高一毕竟不同于高三,要循序渐进,要培养学生良好的学习习惯。每次考试的难度可以控制在0.65左右。
3、适时进行高中数学的学法指导和心理辅导,让学生快速适应高中数学的学习模式。
4、教师要摆正心态,不能急躁,讲授概念和方法要耐心、细致!并且还要适时的对学困生进行鼓励,就像我刚开始提到到的,一部分学困生可能是人生中第一次受到这样的打击,第一次有自己是“数学差生”的感觉,老师如果鼓励及时就很有可能会挽救很多这样曾经很辉煌但是现在很落魄的学生!
附录:需要补充或强化的内容
1.数与式的运算:补充立方和(差)公式、两数和(差)立方公式(它是二项定理的最佳接洽点,也即是二项定理的最进发展区。)、三个数的和的平方公式的推导及应用(正用和逆用);强化根式、分式的运算与化简。(二次根式:适当补充相当的运算。如整体运算等)
2.因式分解:补充十字相乘法、分组分解法和添项、拆项法;强化公式法。(十字相乘法和分组分解法。要求是非常熟练。尤其是十字相乘法,它是解一元二次方程最快的方法,当然它也就是解一元二次不等式的最快的方法。)
3.强化一元二次方程的根的判别式及应用;补充一元二次方程的根与系数的关系。
4.补充不等式的解法:包括一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法。
5.强化配方法求二次函数的定点和对称轴,强化二次函数的图像和性质,补充二次函数在给定区间上的最值问题。(这是整个高中阶段非常重要的基础问题,可以说,很多综合题的求解,最终都可转化为二次函数在给定区间上的最值问题。)
6.补充一元二次方程根的分布(区间根)。
7.补充简单的二元二次方程组的解法。(初中新课程标准下的数学教材删除了解三元一次方程组和二元二次方程组。当然也就删除了解方程组的基本思想:消元和降次。而这些思想方法在高中是必不可少的,高中的要求是学生能列就能解。)
8.补充可化为一元二次方程的分式方程和无理方程的解法(初中教材删除了可化为一元二次方程的分式方程和无理方程,同时也就删除了用换元法解分式方程和无理方程的思想;删除了分式转整式、无理转有理的重要思想方法)。
9.补充三角形的“四心”的定义及几何性质。
10.补充平面几何有关的定理与性质:包括等比定理、合分比定理;平行线分线段成比例定理;三角形内角平分线定理;三角形外角平分线定理;直角三角形中的射影定理;梯形中位线性质。
11. 补充与圆有关的定理:包括圆内接四边形及其性质定理、垂径定理、弦切角定理、相交弦定理、切割线定理。
12.补充圆内接(外切)正多边形的边长、半径、边心距和中心角的关系;尤其是圆内接(外切)正三角形、正四边形、正六边形的边长、半径、边心距和中心角的关系。
(二)需要补充或强化的数学思想方法
数学方法主要有:(1)配方法(在高中有着相当重要的地位与作用,初中虽也涉及,但还需使学生能熟练掌握配方法的基本过程)。
(2)换元法(也是最基本的数学方法之一,在数学解题中有着不可估量的作用,初中对该方法的训练已大大弱化,高中数学却经常使用)。
(3)待定系数法(作为基本的数学方法初中要求明显降低,高中教学可进行系统的讲授与训练)。(4)反证法。
数学思想主要有:函数方程的思想、数形结合的思想、分类讨论的思想、化归与转化的思想。
其中衔接教学的重点内容是: 十字相乘法、分组分解法和添项、拆项法分解因式;一元二次方程的根与系数的关系;一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形“四心”的定义及几何性质。难点是:添项、拆项法分解因式;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形内(外)角平分线定理;与圆有关的定理及应用。

⑺ 如何搞好高初中数学教学衔接

数学过渡的应对策略一

1.高一数学教师应做好内容上的过渡

充分掌握初中教学大纲和教材,了解学生对初中知识的真实把握情况。把初中数学教材删掉而高中数学必要的知识点,可以通过校本课程的形式向学生的开放。比如:“十字相乘法、三角形重心性质、根与系数的关系”等。在高一教学过程中,不能盲目的追求进度,使学生平稳的渡过这一艰难时期。但是按照课标要求,高一上学期要完成两个模块的教学。而我们大多数都是完成必修1、必修2。这两个模块对于刚刚进入高一的学生来讲,难度较大。我认为高一可以适当的调整所上内容。比如第一模块我们可以考虑学习必修3。这一模块主要是统计案例、算法初步。尤其统计学生在小学、初中都有所涉及,容易过渡。

2.重视学法指导,培养学生反思总结能力

高中数学知识具有抽象性强、逻辑思维比较明显等特点.因此,我们应该在教学中进行对学生学法的指导.尤其是对教学的基本方法的指导,适当的进行非常规方法的渗透.例如,在每一个单元教学结束时,就要求学生开展自我归纳、自我反思活动;在解一道数学题后,就帮助学生反思自己的解题思路与计算步骤,并对数学思想方法进行深入的总结.从而提高学生的反思能力,促使其养成良好的学习习惯,扩大自己的知识面,从而提高了学习的效率.在初中数学教学中,教师可以适时的开展专题教学,帮助学生攻克教学中的难点知识,系统的总结某一类知识,找出解决相关问题的方法与规律.这样,在潜移默化中向学生渗透了数学思想方法.如,数学中很多概念、公式、定理等,学生往往会感到枯燥与无味,时间长了学生容易产生惧怕的心理.所以,我们可以对学生进行学法指导,使他们尽快的识记并学会如何正确的运用.

3.遵循认知规律,防止急躁冒进

知识的积累和运用是需要过程的,教师应该遵循教学规律,不能贪大求多,有些教师在刚进入函数教学时就拿高考题给学生做练习,让学生求函数的值域,这是高考的重点也是难点,但是让刚进入高中的学生来做显然难度太大。教师在教学时应该“分步走”,而不是“一步到位”。高中数学教学也应该注意情境的创设,尽量做到问题的提出、内容的引入和拓宽生动自然,并能引导学生去思考、尝试和探索,在数学问题的不断解决中,让学生随时享受到由于自己的艰苦努力而得到成功的喜悦,从而促使学生的学习兴趣持久化,并能达到对知识的理解和记忆的效果。

数学过渡的应对策略二

1.明确初中、高中教材内容的断层

高中数学教材内容要求学生掌握初中数学基础知识。因此,教师要提早让学生了解初中、高中数学教材内容的不同,重视数学叙述完整性和论证严密性,在教课时掺加一些高中数学内容。初中数学知识和日常生活联系紧密,数学语言趣味性、直观性、形象性较强,学生很容易接受和理解。而高中数学概念比较抽象,习题多较多,解题需要灵活的技巧。为了弥补初、高中数学教材内容的断层,初三教师应当注意问题的创设情境,要详细叙述数学问题的引入、提出和拓展。引导学生尝试和思考。学生解决数学问题时,可能会出现偏差。教师要积极引导,促使学生学习有着持久的兴趣和热情。教师在讲述重要的数学定理时,尽量创设情境,达到师生互动。

2.加大师生的互动交流

数学教学是师生彼此交流的双边活动,教师教学和学生学习是相互的。升入高中之后,学生要端正学习态度,寻找适合自己的学习方法。学习方法是初、高中数学过渡衔接的关键。教师可将作业讲评、知识讲解和试卷分析融入教学活动内,便于学生接受。课堂上,教师和学生进行互动,解决学生学习上的困惑。在数学难点上,教师可降低要求,做到循序渐进。

3.培养学生良好的学习习惯

许多学生有着良好的学习习惯,上课专心、勤学好问、及时复习、独立做作业。上课专心听讲并不代表学生懂了。教师要引导学生处理数学知识的“听”、“思”、“记”之间的关系。学生要制定合理的学习计划,并安排好时间。听课过程中,要了解数学知识的重点和难点,有选择记笔记。解题后要总结和反思。在良好的学习习惯下,学生会自行拟定提纲,并在课前做好预习,课后做好总结。

数学过渡的`应对策略三

1.培养学生主动预习的习惯。教师应在开学之初就有意培养学生的预习习惯,教会学生有效的预习方法,一步领先,步步领先――良好的超前学习是学习成功的一半。预习时学生不必把这节课要学的内容吃透,只要知道这节课将要学哪些内容,学哪个知识点,以及本节课在整个课堂任务中处于哪个环节、有何重要性即可,带着本节课的定位和疑问去学习知识,为听课“铺”平了道路,形成期待老师解析的心理定势。这种需求心理定势必将调动起同学们的学习热情和高度集中的注意力。这样就能使课前准备与课堂吸收有机结合起来,使学与教更有效地渗透,这样便可大大提高课堂学习的效率。

2.认真听课。听老师讲课是获取知识的最佳捷径。为了提高课堂效率,听课时应保持精力旺盛,头脑清醒,这是学好知识的前提条件。课堂上,注意力集中十分关键,思想不要开小差。在讲课过程中,老师为了引入一个数学概念或解释数学定理,可能会从不同的角度切入教学内容或自己讲解,或者提问学生。学生则不能简单地看热闹,而要和老师的思维融为一体,仔细观察、思考老师这样做的目的?我从中发现什么?得到什么结论等等。“知己知彼,百战百胜,”所以,学生只有更快,更好地了解老师,适应了老师的教学方法,才能更有效的学好数学。然而有的同学听课时,往往忽视老师讲课的开头和结尾,这是错误的。开头,老师往往只是寥寥数语,但却是全堂讲课的纲。只要抓住这个纲去听课,下面的内容才会眉目清楚。结尾的话虽也不多,但却是对一节课精要的提炼和复习提示。

3.有效复习和练习。高中复习在于平时,考前的“临时抱佛脚”是不起作用的。复习可这样进行:课后回忆,即在听课基础上把所学内容回忆一遍;精读教材,对教材理解得越透彻,掌握得越牢靠,学习效率也就越高。整理笔记;看参考书,这是补充课外知识的好方法;查缺补漏,系统掌握知识结构;循环复习,将甲复习完后复习乙,在复习完乙后对甲再进行复习,这种循环复习利于增强记忆,巩固知识体系。在训练过程中,要注重分析解题过程、归纳学习方法,并注重一题多解、一题多变、举一反三、灵活变通的解题方法技巧的培养,加强练习,学会归纳总结,养成良好的学习习惯,习题不在多,而在于精,在于典型、针对性强;每做一道题,都要用心揣摩这一类题目的特点,考查的是哪个知识点,用到了哪些方法与技巧。要善于发现不同题型、不同知识点之间的共性和联系,把学过的知识系统化。

数学过渡的应对策略四

1.合理铺垫:教新课的过程中对初中知识进行复习巩固,主要是因式分解、绝对值与根式、代数式的恒等变形、函数、方程与不等式,为学生学习打下坚实基础。

2.注重引入:好的开始是成功的一半,在讲函数问题时,值域(或最值)、单调性等,以学生认识较清楚的一次函数、反比例函数等入手,使学生不觉得是个又新又难的问题。

3.数形结合:华罗庚先生指出,数缺形时少直觉,形少数时难入微。对数学问题从数形联系上着眼,用数形结合解题,能使抽象的数学问题形象化,把呆板的数学式子赋予生动的几何意义,如把方程的解集转化为曲线的交点,解决连续数集的问题用数轴,解决离散数集问题用文氏图,概念的讲解用文字语言、数学语言、图形语言相互转化等。在讲反函数之后我又加了一节,主要讲图像,让学生了解:y=f(x)与y=(x+k)、y=f(x)与y=f(x)+h、y=f(x)与y=(-x)、y=f(x)与y=-f(x)间的关系。对后面的求函数值域、单调区间及学习指数函数起到了积极的作用。

4.注重数学思维方法的培养:数学课堂不仅是传授必须的数学知识,更重要的是教会学生思想方法,它不仅能使学生站在一定的高度理解数学问题而且数学的思维在生活中常常用到,这是使学生终生受益的事:如加强化归思想方法的训练,培养学生联想转化的能力,把一个复杂的问题转化成一个简单熟知的问题加以解决,这是一个重要的数学思想方法,这种方法在数学中的应用十分广泛。

⑻ 浅谈如何做好初中向高中过渡数学教学衔接

高中数学知识比初中数学知识涉及面更广。初中的平面几何、代数知识较为简单,而高中的立体几何、平面向量、三角函数知识难度较大。学生很难适应初高中数学过渡。通过初高中过渡数学教学的衔接,学生会拥有学习的信心,能够认识到初中数学和高中数学知识的差距。初中数学成绩好的学生,步入高中时学习方法并不有效,以初高中数学的衔接,让学生适应数学教学,渡过学习困难阶段。提升学生的学习成绩和效率,能够避免学生学习成绩下降,提高学生学习的兴趣。
一、初中向高中过渡数学教学中存在的问题
1.教材难度增加
高中数学课程注重培养学生的数学逻辑辨析和数学思维能力。高中数学涉及直观感知、归纳类比、观察发现、抽象概括、空间想象、运算求解和反思建构。数学教学目标包括过程方法、知识技能、情感意识。高一数学的函数模型、集合语言、坐标法和空间立体图形转换,比较初中数学逻辑推理更强、抽象思维高、知识难度大。学生们很难适应。
2.教学方法改变
初中教师讲述教学内容较为细致,归纳的完整。学生只要记住公式、概念和教师的例题类型,就可以仿照着进行答题。多数初中生愿意听从教师的教导,而不会自我思考和总结数学知识规律。高中数学知识内容较多,课堂教导知识较少,教师不能讲清题型和知识应用形式,只会讲一些典型题目,从而达到“三基”的培养。高中数学教师在讲解基础知识之外,还对学生进行数学方法和思想的培养,体现了学生主体和教师主导的作用。
3.课程内容增多
高中数学知识比初中数学知识更为抽象,逻辑性、理论分析题目增多,特别是研究变量问题,需要很高的计算能力。近些年来,由于教材内容发生了变化,初中数学教材难度有很大的降低幅度。由于高考限制,高中数学教材内容的难度并没有降低。市场上的高中数学教材不断增加,难度范围也在不断扩大。从某种意义上看,教材调整后高中数学教材的内容难度差距不但没有缩小,反而增加了难度。
二、初中向高中过渡数学教学的教学策略和建议
1.明确初中、高中教材内容的断层
高中数学教材内容要求学生掌握初中数学基础知识。因此,教师要提早让学生了解初中、高中数学教材内容的不同,重视数学叙述完整性和论证严密性,在教课时掺加一些高中数学内容。初中数学知识和日常生活联系紧密,数学语言趣味性、直观性、形象性较强,学生很容易接受和理解。而高中数学概念比较抽象,习题多较多,解题需要灵活的技巧。为了弥补初、高中数学教材内容的断层,初三教师应当注意问题的创设情境,要详细叙述数学问题的引入、提出和拓展。引导学生尝试和思考。学生解决数学问题时,可能会出现偏差。教师要积极引导,促使学生学习有着持久的兴趣和热情。教师在讲述重要的数学定理时,尽量创设情境,达到师生互动。
2.加大师生的互动交流
数学教学是师生彼此交流的双边活动,教师教学和学生学习是相互的。升入高中之后,学生要端正学习态度,寻找适合自己的学习方法。学习方法是初、高中数学过渡衔接的关键。教师可将作业讲评、知识讲解和试卷分析融入教学活动内,便于学生接受。课堂上,教师和学生进行互动,解决学生学习上的困惑。在数学难点上,教师可降低要求,做到循序渐进。
3.培养学生良好的学习习惯
许多学生有着良好的学习习惯,上课专心、勤学好问、及时复习、独立做作业。上课专心听讲并不代表学生懂了。教师要引导学生处理数学知识的“听”、“思”、“记”之间的关系。学生要制定合理的学习计划,并安排好时间。听课过程中,要了解数学知识的重点和难点,有选择记笔记。解题后要总结和反思。在良好的学习习惯下,学生会自行拟定提纲,并在课前做好预习,课后做好总结。
4.训练学生的解题思维
数学解题要用到定理、推论和概念,不同阶段的学生,解题思维训练也有差异。初一代数数学训练了学生抽象概括力、初二学生的形式思维能力有所加强、初三数形结合解题拓展了学生预见性思维。高中学生需要较强的逻辑运算、逻辑思维、抽象思维能力。学生在学习和复习过程中要明白知识点的内在联系,组成知识结构图表。要分类总结数学思维方法与解题方法,寻找联系和区别。
初、高中数学教学衔接对学生的数学成绩起到了至关重要的作用。高一数学和初中数学教材内容存在断层,逻辑性和理论性问题较多,初中的学习方法不能适应高中学习。因此,教师要和学生互动交流,找出学生数学学习的难点和重点,培养学生的学习习惯、训练学生解题思维,让学生尽快适应高中阶段学习,找到适合自己的学习方法。只有这样,学生才能顺利、高效的接受数学新知识,做到初中数学和高中数学的过渡衔接。

⑼ 如何做好初高中数学教学衔接

“老师,我家小孩初中数学很好,为什么现在和以前不一样了?”“老师,您讲的内容我都听得懂,也很努力地学了,可为什么成绩没有提高啊?”在进行高一数学教学时,我时常会听到一些家长和学生反映:高一数学课程内容多、难度大,时间不够用,找不到适合自己的学习方法。针对这种情况,笔者结合自己多年来高中数学教学实践,就如何做好初高中数学教学的有效衔接,谈一下自己的感受与心得,供广大师生参考。
一、学习方法的衔接
对于刚刚走进高中校园的学生来说,他们迫在眉睫的任务就是转换角色,适应新的环境。然而有些同学经过一个月,甚至更长时间都没有能够适应高中的教学,主要原因就在于他们仍然没有摆脱初中的学习方法。初中由于知识点不多,课时富裕,教师往往采用反复讲反复练的做法,直到学生掌握为止,使得学生过多地依赖教师,缺乏自主学习的意识;高中的教学鉴于知识点多而杂,课时紧等现象,基本上每节课都是新内容,这就要求学生学会思考、学会自主学习。教师也要改“授之以鱼”为“授之以渔”。
二、知识层面的衔接
教学中要注重初高中知识的连续性和整体性,加强衔接教学。这就要求高中教师对初中教材有一定的了解,弄清楚哪些知识学生在初中学过,哪些知识在初中没有学过而在高中却要用到。如二次函数的图像和性质。初中要求确定二次函数的表达式,会用描点法画出二次函数的图像,并能从图像上认识二次函数的性质,会利用二次函数的图像求一元二次方程的近似解。而高中则要求结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。同样,几何学里也有一些概念和定理,初中教材只是“蜻蜓点水”地点到,而高中教材中常常要涉及相关内容,因此也需适当补充讲解。
三、数学思想方法的衔接
初中数学教材在内容和表述上具体,以定量计算为主,题型少而单一;而高中数学在内容和表述上更抽象,以研究变量为主,题型灵活多变。高中强调数学能力和数学思想的运用,其中对运算能力、逻辑推理能力和分析问题、解决问题的能力要求都很高。对于数学思想方法,特别是数形结合思想、函数与方程的思想、分类讨论思想在高一上学期的学习中即有很高的要求。如必修一第一章第一节《集合》中,“若集合A是集合B的子集”,对于这一条件,一般需分两种情形去思考:即集合A是空集或不是空集。这就需要学生有分类讨论的意识。紧接着函数部分内容的学习又经常会利用数形结合的思想去判断函数的单调性、值域、零点的个数等等。一般来说,典型的思想方法主要有四类:函数方程思想、数形结合思想、分类讨论思想和等价转化思想。解题方法大体上有:配方法、换元法、配凑法、反证法、数学归纳法、解析法、待定系数法、定义法等等。这些典型的数学思想方法和解题方法在初中没有系统地给予归纳总结,需要我们通过不断地训练,加以归纳总结,使学生逐步熟悉并最终掌握。
总之,高中数学在内容上更抽象,方法上更理性,因此如何尽快做好初高中的衔接不仅是每一个学生学好数学的关键,也是每一位数学教师在教学中需要思考的问题。

阅读全文

与数学如何实现初中到高中的平稳过渡相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050