导航:首页 > 数字科学 > 数学都研究什么时候

数学都研究什么时候

发布时间:2023-05-30 11:54:36

1. 数学起源于什么时候

数学的滑正由来:

1、从人类的角度:

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能瞎大应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

2、从时间的角度:

数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、磨让竖初等算术与算法,几何学则可以看作是应用算术。

(1)数学都研究什么时候扩展阅读:

数学的发展史:

1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”

2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”

3、在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”

4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

5、现代数学已包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

参考资料:数学-网络

2. 数学主要是研究什么啊

主要知芹研究 数量关系和空慧雀间关系。

具体的说就是:
代数:数量前猛早关系
几何:空间关系。
三角:数量关系和空间关系。
如此等等。

3. 数学是什么时候产生的

数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点.数学的希腊语Μαθηματικ?mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”).
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备.17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在研究经典力学的过程中,微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展.
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处.数学在历史上有着许多的发现,并且直至今日都还不断地发现中.依据Mikhail B.Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目.此一学海的绝大部分为新的数学定理及其证明.”

4. 数学起源于哪里

数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法弯差,几何学则可以看作是应用算术。

从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)

直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为念腔目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”

从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

拓展资料:

学数学意义

学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些埋高皮讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!

掌握数字规律,训练逻辑思维,能训练人们的思维能力.开发脑力.更理性的去认识这个世界.数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题 掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.意义深远!

5. 数学主要研究些什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科.透睁卖过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观悉或逗团做察中产生.

6. 数学教育发展的历史

中国近代高等数学教育,也是从清朝末年开始的。1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。1898年戊戌变法中,京师大学堂成立,这是中国近代第一个国立大学。1902年,同文馆并入京师大学堂。

辛亥革命后,1912年京师大学堂改名北京大学,首创数学门(相当于系),1919年改称数学系,这是中国第一个数学系。随着较早成立数学系的有南开大学(1920)、厦门大学(1926)、中山大学(1926)、四川大学(1926年前后)、清华大学(1927)、浙江大学(1928)等。此外,1912~1915年间,还成清隐立了北京高等师范学校(1912,前身是1902年设立的京师大学堂师范馆)、武昌高等师范学校(1913)、南京高等师范学校(1915),各设立数学物理(化学)科,他们先后改为北京师范大学(1922)、武汉大学(1928)、东南大学(1923;1928年又改为中央大学),并都成立了数学系,其间或以后成立的其他综合大学、师范院校以及设有理科的高等学校都陆续成立数学系。

各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。

1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。

除了伏迅在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。

从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献缺正此。

中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。

从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。

以上情况表明,中华人民共和国成立以后,数学教育在数量和质量上都发生了显着变化,逐步发展提高。但也存在一些问题,如:必修课太重,不少课程要求过专过高,教学制度又过分要求划一,未能因材施教,导致学生学习负担过重,基础不牢,加以对理论和实践有时理解得不全面,工作中有摇摆,使数学教育的发展受到影响。尽管如此,这段时期的数学教育成就还是很大的。一般数学人才的培养已能立足于国内了。

从1966年开始的“文化大革命”,数学教育受到严重挫折。1977年后,经济、政治、科学、教育各方面都先后提出了改革的方针和措施;实事求是精神的发扬,学校自主权的加强,教学制度的灵活,选修课的增加,使各校有条件分别发扬其优势,形成自己的特色。由于明确提出了“大力发展应用研究,重视基础研究”的方针,纯粹数学和应用数学各得其所,长期存在的关于理论和实践关系的认识分歧终于澄清。除了基础数学、计算数学和应用数学专业外,综合大学和师范院校还设了数理逻辑、控制理论、系统科学、信息科学、概率论与数理统计、运筹学、经济数学等专业,许多工科院校也建立了应用数学专业。高等学校理、工、农、医以至经济、管理方面等科系的学生,都学习比过去更多的高等数学方面的课程。

中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。

中国数学教育趋势

数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。

7. 大学的高等数学相当于数学历史上的什么时候研究的内容

大概是17世纪左右及以后吧。

我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。

这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。

因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。

研究意义

数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。

根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。

8. 现代数学发展的历史进程!

对于你提的问题我很陌生,不过还是在Google的帮助下找到了一些,仅供参考。希望对你有所帮助。
(你也可以用Google搜索 现代数学时期,结果相当丰富)
现代数学时期
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。

18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。

19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数神团学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一燃瞎尺片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。

19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的着名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现皮高存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。

拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。

20世纪有许多数学着作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。

20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(325.8万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。

上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。

1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。

计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。

应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。

20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入计算机科学之中等等。

20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。

当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。

今天,差不多每个国家都有自己的数学学会,而且许多国家还有致力于各种水平的数学教育的团体。它们已经成为推动数学发展的有力因素之一。目前数学还有加速发展的趋势,这是过去任何一个时期所不能比拟的。

现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。

以上简要地介绍了数学在古代、近代、现代三个大的发展时期的情况。如果把数学研究比喻为研究“飞”,那么第一个时期主要研究飞鸟的几张相片(静止、常量);第二个时期主要研究飞鸟的几部电影(运动、变量);第三个时期主要研究飞鸟、飞机、飞船等等的所具有的一般性质(抽象、集合)。

这是一个由简单到复杂、由具体到抽象、由低级向高级、由特殊到一般的发展过程。如果从几何学的范畴来看,那么欧氏几何学、解析几何学和非欧几何学就可以作为数学三大发展时期的有代表性的成果;而欧几里得、笛卡儿和罗巴契夫斯基更是可以作为各时期的代表人物。

9. 数学从什么时候开始

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本前含概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展肢吵。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程,而其后更发展出更加精微的微积分。

(9)数学都研究什么时候扩展阅读

数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。

除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽历悔侍象概念的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。

更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普,历史上曾有过许多各异的记数系统。

古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的,这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。

10. 数学发展历史是什么

数学发展如下:

第一时期

数学形成时期,这是人类建立最基本的数学概念的时期,人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

第二时期

初等数学,即常量数学时期,这个时期的基本的、最简单的成果构成中学数学的主要内容,这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,这个时期逐渐形成了初等数学的主要分支算术、几何、代数。

第三时期

变量数学时期,变量数学产生于17世纪,大体上经历了两个决定性的重大步骤,第一步是解析几何的产生,第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,它是数学的一个基础学科,内容主要包括极限、微分学、积分学、方程及其应用。

微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

第四时期

现代数学,现代数学时期,大致从19世纪初开始,数学发展的现代阶段的开端,以其所有的基础代数、几何、分析中的深刻变化为特征。

中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环,中国古代算术的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。

华氏定理是我国着名数学家华罗庚的研究成果,华氏定理为体的半自同构必是自同构自同体或反同体,数学家华罗庚关于完整三角和的研究成果被国际数学界称为华氏定理,另外他与数学家王元提出多重积分近似计算的方法被国际上誉为华—王方。

苏氏锥面数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为苏氏锥面。

苏步青院士对仿射微分几何的一个极其美妙的发现是他对一般的曲面,构做出一个访射不变的4次代数锥面。

在访射的曲面理论中为人们许多协变几何对象,包括2条主切曲线,3条达布切线,3条塞格雷切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来,这个锥面被命名为苏氏锥面。

阅读全文

与数学都研究什么时候相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050