A. 中考数学解答难题的十二种方法
中考数学解答难题的十二种方法
引导语:下面我给大家带来中考数学解答难题的十二种方法,希望能够帮助到您,谢谢您的阅读,祝您阅读愉快。
方法一:一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
方法二:确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法三:调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法四:“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法五:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的'开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法六:回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
方法七:应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提嫌伍出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
方法八:“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋毕山于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉芹数或、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
方法九:讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成中考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。
方法十:面对难题,讲究方法,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
方法十一:以退求进,立足特殊
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。
方法十二:执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
;B. 天津中考数学答题技巧,求高人
【重点解析及解题技巧】三大方法让你茅塞顿开
选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
1、排除法。是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的条件特殊化。使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
【应试策略】准确制胜
1、仔细审题。拿到试卷后,不要急于求成,马上作答,而要通览一下全卷,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。考试时精力要集中,审题一定要细心。要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意异同),从多层面挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据。否则,一味求快、丢三落四,不是思维受阻,就是前功尽弃。
2、按考卷顺序进行作答。中考的考题是由易到难,考试开始,顺利解答几个简单题目,可以使考生信心倍增,有利于顺利进入最佳思维状态。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。
3、遇到难题,要敢于暂时“放弃”,不要浪费太多时间(一般来说,选择或填空题每个不超过2分钟),等把会做的题目解答完后,再回头集中精力解决它,可能后面的题能够激发难题的做题灵感。
4、卷面书写既要速度快,又要整洁、准确,这样可以提高答题速度和质量。今年中考采用电脑阅卷,这要求考生填涂答题卡准确,字迹工整,大题步骤明晰。草稿纸书写要有规划,便于回头检查。
5、调整心态。考前怯场或考试中某一环节暂时失利时,不要惊慌,不要灰心丧气,要沉着冷静,进行自我调节。
量化数学中考答题时间
采访对象:黄浦区教师进修学院初三数学教研员 李建国
现场李建国的量化答题时间的发言引起热议。他表示中考数学答题时间只有100分钟,而他以前做过这样一个“实验”,让一些数学老师完整地将中考数学的答案抄一遍,也要花近半小时的时间。这直观地反映出了数学中考时间之“紧”。要在短短100分钟的时间里,完成150分值的题目,这就需要量化考生的答题时间。他将中考数学分成三个部分,其中前两个部分是送分题,相当于毕业考的要求。而最后一部分则属于“拉分题”。他认为第一部分是填空题和选择题,这在中考中占72分,考生要在20分钟,甚至是18分钟内答完这些题。第二部分是四道简答题,共40分,考生要在20分钟以内答完。第三部分38分的“拉分题”共四题,需要在剩余的60分钟内完成。
细化分数 由于“拉分题”的难度较大,所以考生必须抓紧前两部分的答题时间,留出更多的时间来思考并解答后面的难题。但李建国也强调,这并不等于不重视“送分题”。他表示,一般想考区重点高中的考生的数学成绩要在140分以上,市重点高中的数学成绩要在145分以上。所以考生不仅要尽量做出“拉分题”,更要保证前面的“送分题”零失分。这就需要考生平时进行两方面的训练,即对基础知识、概念的掌握和自身数学能力的提高。
专项训练 平时复习时可采取专项训练的做法。即将填空题、选择题和简答题归成一类,在做题时讲求速度和准确率。此外,还要保证会做六至九年级数学书中的习题。经过一段时间的训练,考生在这方面就能少失分,甚至是零失分。
考生在做难题时也要进行归类,他认为一般最后的“拉分题”可分成:应用题、几何题、函数型的综合题(动点问题)和几何型的综合题(探索性问题)这几类。考生可以每天选择一类进行突破,做到每天一题并保证完全弄懂。因为这些难题是一种思维的锻炼,需要依靠长期的训练。考生在做题时要记住:“大题小做”和“化繁为简”。
最后,李建国建议考生可以找出最近5年的中考试卷和各区县的模拟卷,消化这些试卷中的每一题,并通过“横向”和“纵向”的比较,找出自己的薄弱环节,着重突破。
数学中考答题技巧
一、考前准备
考前要摒弃杂念,排除一切干扰,提前进入数学思维状态。闭眼想一想平时考试自己易出现的错误,然后动手清点一下考场用具,轻松进入考场。这样做能增强信心,稳定情绪,使自己提前进入“角色”。
二、考前5分钟
拿到试卷后,而要通览一下全卷,摸透题情。看无印刷问题等。此时不能动手答题,但可以阅读试题,因此可以根据自己的情况,有选择地阅读一些试题,如题目比较长的,或者有一定难度的题。
三、开始答题后
(1)把自己容易忽略和出错的事项在草稿纸上作好记号,如三角形的面积公式,四个象限点的符号,等,也可以写一两名提醒自己的话。
(2)仔细审题考试时精力要集中,审题一定要细心。要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意异同),从多层面挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据。否则,一味求快,丢三落四,不是思维受阻,就是前功尽弃。
(3)由易到难就是先做容易题,后做难题。考试开始,顺利解答几个简单题目,可以产生“旗开得胜”的快感,促使大脑兴奋,有利于顺利进入最佳思维状态。考试中,要先做内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。遇到难题,要敢于暂时“放弃”,不要浪费太多时间(一般地,选择或填空题每个不超过2分钟),等把会做的题目解答完后,再回头集中精力解决它。从近几年的中考中不难看出,选择、填空、解答三类题,比较难的都安排在比较靠后的位置,如06年中考题,最难的有四小题,其中选择题是最后一题,填空题是最后一题,解答题是最后一题的最后一小题,倒数第二题的最后一小题;05年中考题的情况完全相同。
(4)分段得分近几年中考数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大。因此,解答时应注意“分段得分”,步步为营。首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分。中考中的数学解答题都是按步给分的,如果过程比较简单,一旦出现错误往往会丢比较多的分,因此中间过程不要过于简单,这样即使错误也可以尽可能少扣分。又如一些探究性问题经常会这样说:请回答某某某命题是否成立,若成立,请加以证明。出现这种问法,一般那个命题大多是成立的,所以就算你不会证明,但是只要写上“成立”二字,就可以拿到1分的。对于一些题,无法解答,但可以根据题意写一些,经常会得到一些分。如果因为时间过紧或只知道结果而不能正确书写正确结果,就将正确答案写上。
(5)跳跃解答就是指当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问。在解题过程中感觉非常麻烦或者出现了我们没有学习过的知识,那就应该怀疑一下自己解题的正确性或合理性。
(6)先改后划当发现自己答错时,不要急于划掉重写。这是因为重新改正的答案可能和划掉的答题无多大区别。其次,看着空白的答案纸重新思考很费神。另外,划掉后解答不对会得不偿失。
(7)联想猜押首先,当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始类比联想。如“课本上怎么说的?”,“笔记本上怎么记的?”,“老师怎么讲的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等。另外,考试时间快结束的时候,不要再尝试新的问题。如果选择题还有不确定的,可以在先淘汰部分选择支的情况下,根据四个选择支在整卷中出现的概率进行猜测。
(8)速书严查卷面书写既要速度快,又要整洁、准确,这样既可以提高答题速度和质量,又可以给阅卷的老师以好印象;草稿纸书写要有规划,便于回头检查。检查要严格认真,要以怀疑的心态地查对每一道题的每一个步骤。如“有没有看错了问题?”,“问题中的已知条件运用是否有误?”,“是否遗漏了什么?算错了什么?”等等。值得注意的是,对于检查时出现两种答案不确定的情况时,一般而言,“最先想起的才是正确答案”。
中考数学十种最优科学答题技巧
科学的答题技巧可以让你事半功倍,要在有限的考试时间内发挥出自己的能力水平,考生需要掌握一些适合自己的基本答题技巧,为使同学们在考试中更好地发挥自己的实力,获得理想的分数,心理专家总结出如下十种最优答题技巧:
1.调理大脑思绪,提前进入考试科目情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设考试科目情境,进而酝酿该科目思维,提前进入“角色”。通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,以转移自己对焦虑紧张情绪的关注,减轻压力,使思维单一化、学科化,确保自己以平稳自信、积极主动的心态进入考试。
2.“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证。一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧;但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
3.沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的。拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个容易的或者熟悉的题目,让自己产生“旗开得胜”的快意,获得成功的体验,拥有一个良好的开端,以振奋精神、鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”。之后做一题得一题,不断产生正激励,稳拿中低难度的题,见机攻高难度的题。
4.“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
(1)先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目。从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,以免影响解题情绪。
(2)先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措,应想到试题偏难不是针对个人的,对所有考生都难,通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
(3)先同后异。就是说,先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
(4)先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础。
(5)先点后面。特别要指出的是,近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题的回答准备了思维基础和解题条件,所以要步步为营,由点到面。
(6)先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
5.一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
6.讲求规范书写,力争既对又全
卷面是影响评分的一个重要因素。因此,要保证做对、写全和规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整都会造成失分。因为字迹潦草,会给阅卷老师形成不好的第一印象,进而使阅卷老师认为考生学习不认真、基本功不过硬,“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
7.面对难题,讲究策略,争取得分
会做的题目当然要力求做对、做全、得满分,但考生在考场上也经常会遇到不能全答对的题目。可采用下面有两种方法:
(1)缺步解答。对一个疑难问题,确实啃不动时,明智的做法是:将它划分为一个个小问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
(2)跳步解答。解题过程卡在中间环节上时,可以承认中间结论,往下推,看能否得到正确结论。如果推不出正确结论,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克中间环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这些都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
8.以退求进,立足特殊,发散一般
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
9.执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
10.回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论。这样就会步骤所至,结论自明。
一:合理安排时间:
做题时首先要合理安排时间,调整心态。一般选择题、填空题30分钟左右的时间完成,做这一部分题时,若有1、2道题有思维障碍,先放下,继续做中等题,当把会做的题完成后,在回过头来分析这两道题。较难的两道综合题一般留有40分钟左右的时间。
二:重视方法、技巧:
①重新画图:当你做题理不出头绪时,由条件重新画图试试,你可能会找到突破口。
②换角度思考:如图a,求空白部分面积。可把图形经过平移后,求图b空白部分的面积。
③要全面考虑问题:
如:关于X的一元二次方程(1-2K)X2-2 X-1=0有两个不相等的实数根,求K的取值范围?
此题不仅考虑△>0,二次项系数1-2K≠0,还要考虑 中K+1≥0
④克服思维定式:
如:“等腰三角形” 不仅考虑“顶角为锐角的等腰三角形” 情况,还要考虑 “顶角为钝角的等腰三角形” 、“顶角为直角的等腰三角形” 情况。
“两圆相交”不仅考虑 “ 圆心在公共弦两侧”的 情况,还要考虑 “圆心在公共弦同侧” 的情况。
⑤弄清条件理清思路:
综合题往往有好几问,弄清楚总条件、分条件,每问之间的关系非常重要。以下题为例:
已知:AB是 OO的 直径,BC是 OO 的切线, OC 与 OO 相交于点D,连AD并延长与BC相交于点E。
⑴若BC= ,CD=1,求 OO 的半径。
⑵取BE的中点F,连接DF,求证:DF是 OO 的切线。
⑶过点D作DG⊥BC,垂足为G,DG与OE相交于M。
①求证:DM=GM
②连接BM并延长与OC相交于点N,试判断以N为圆心,经过点E的 ON 与 OO 的位置关系,并说明理由。
分析:
⑴、⑵、⑶问的关系是并列的,即⑴的结论⑵不能用,⑶不能用;⑵的结论⑶也不能用。第⑶问中的①、②两问是递进关系,即①中的结论②可以用。
先解答填空题,一般讲填空题是基本概念,基本运算题,得分比较容易,当然试题中计算题或者证明题以平时看书或者参加辅导班老师所讲的例题类似的也可以先做;其次做计算题; 最后解单项选择题,因为有些单项选择题概念性非常强,计算技巧也比较高, 数学是令大多数考研者头疼的科目,答题是关键,如果两个考生数学科目相差不大,这就是在答题方法上拉开距离。下面介绍七点数学答题技巧。
第一:确定作体顺序,在做题的时候可以选择采用填空,计算,选择,证明的顺序,因为选择题相对占分比较少写,主要是要求掌握一些基础知识,迷惑性较高,需要花很大的时间去分析很难取舍,而且有些选择题的运算量很大,如果开始做会花去你很多时间而且还感觉不习惯,这样就会影响到你的情绪,证明题需要严密的逻辑推理,难度也不小,偶认为把这两类型的题放到最后边做比较适合,考试先以简单为快,在剩的时间来研究难的,
第二:做选择题的时候可以巧妙的运用作图和赋值的方法,这是平时人们常用到的,考试尽量不要留空白,尽量写一些和本题相关的知识,也就可以的到步骤分。
第三;保持卷面整洁,字迹工整,看起来美观,可以得到印象分。
第四:在考场要保持良好的心态,不要紧张,就把它当作平时的一次小测验来对待。
第五:考前不要抱着什么考前冲刺等之类的书籍,平时吃透就可以了,自己多自己有信心,
第六:考试时一定要放松,遇到没见过的题一定不要紧张,千万要镇静,思绪不能乱,自己有把握拿分的一定不要叫失分,考试应该做到分分计较,见分就要得。
第七:考场上要合理分配时间,做题从易到难,最后根据自己的实际情况来定。
在考场做到以上7点,你一定会不会把自己会做的题没做对,可以说是发挥到了极点。
一、考前预备
考前要摒弃邪念,扫除一切搅扰,提早进入数学思想形态。闭眼想一想平常考试本人易呈现的错误,然后入手清点一下考场器具,轻松进入考场。这样做能加强决心,波动心情,使本人提早进入“角色”。
二、考前5分钟
拿到试卷后,先要通览一下全卷,摸透题情。看无印刷成绩等。此时不能入手答题,但可以阅读试题,因而可以依据本人的状况,有选择地阅读一些试题,如标题比拟长的,或许有一定难度的题。
三、开端答题后
(1)把本人容易疏忽和出错的事项在草稿纸上作好记号,如三角形的面积公式,四个象限点的符号,等,也可以写一两句提示本人的话。
(2)细心审题考试时精神要集中,审题一定要细心。要加快速度,逐字逐句搞清题意(素昧平生的标题更要留意异同),从多层面发掘隐含条件及条件间内在联络,为疾速解答提供牢靠的信息和根据。否则,一味求快,丢三落四,不是思想受阻,就是前功尽弃。
(3)由易到难就是先做容易题,后做难题。考试开端,顺利解答几个复杂标题,可以发生“马到成功”的快感,促使大脑兴奋,有利于顺利进入最佳思想形态。考试中,要先做内容掌握比拟到家、题型构造比拟熟习、解题思绪比拟明晰的标题。遇到难题,要勇于暂时“保持”,不要糜费太多工夫(普通地,选择或填空题每个不超越2分钟),等把会做的标题解答完后,再回头集中精神处理它。从近几年的中考中不好看出,选择、填空、解答三类题,比拟难的都布置在比拟靠后的地位,如06年中考题,最难的有四小题,其中选择题是最初一题,填空题是最初一题,解答题是最初一题的最初一小题,倒数第二题的最初一小题;05年中考题的状况完全相反。
(4)分段得分近几年中考数学解答题有“动手容易,深化难”的特点,第一问较容易,第二、三答辩度逐步加大。因而,解答时应留意“分段得分”,步步为营。首先拿下第一问,确保不失分,然后剖析第一问能否为第二、三问预备了思想根底和解题条件,力争第二问保全分,争取第三问能抢到分。中考中的数学解答题都是按步给分的,假如进程比拟复杂,一旦呈现错误往往会丢比拟多的分,因而两头进程不要过于复杂,这样即便错误也可以尽能够少扣分。又如一些探求性成绩常常会这样说:请答复某某某命题能否成立,若成立,请加以证明。呈现这种问法,普通那个命题大多是成立的,所以就算你不会证明,但是只需写上“成立”二字,就可以拿到1分的。象06年中考第21题问狮子能否将公鸡送到吊环上,答复是就可以得1分,第23题第(1)小题问两个角能否相等,答复相等也可以得1分。关于一些题,无法解答,但可以依据题意写一些,常常会失掉一些分。假如由于工夫过紧或只晓得后果而不能正确书写正确后果,就将正确答案写上,象2004年中考最初一题的最初一小题,海宁全市只要三人答案正确,其中两人只要答案没有进程,此题我们阅卷时全部给满分(3分)。
(5)腾跃解答就是指当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接应用前一问的结论去处理下一问。在解题进程中觉得十分费事或许呈现了我们没有学习过的知识,那就应该疑心一下本人解题的正确性或合感性。
(6)先改后划当发现本人答错时,不要急于划掉重写。这是由于重新矫正的答案能够和划掉的答题无多大区别。其次,看着空白的答案纸重新考虑很费心。另外,划掉后解答不对会得失相当。
(7)联想猜押首先,当遇到一时想不起的成绩时,不要把留意力集中在一个目的,要换个角度考虑,从与标题有关的知识开端类比联想。如“课本上怎样说的?”,“笔记本上怎样记的?”,“教师怎样讲的?”,“以前运用这些知识处理过什么成绩?”,“能否能特殊化?”,“极限地位怎样?”等等。另外,考试工夫快完毕的时分,不要再尝试新的成绩。假如选择题还有不确定的,可以在先淘汰局部选择支的状况下,依据四个选择支在整卷中呈现的概率停止猜想。2006年中考选择题共10题,答案有2A3B3C2D;2002年~2005年这四年中选择题全部是12题,答案都是3A3B3C3D;01年15题,3A4B4C4D;00年15题;4A3B4C4D;98年、99年都是13题,都是4A3B3C3D;97年10题,3A3B2C2D;96年10题,2A3B2C3D。从1996年2006年11年中考,134道选择题,34A34B33C33D。
(8)速书严查卷面书写既要速度快,又要整洁、精确,这样既可以进步答题速度和质量,又可以给阅卷的教师以好印象;草稿纸书写要有规划,便于回头反省。反省要严厉仔细,要以疑心的心态地查对每一道题的每一个步骤。如“有没有看错了成绩?”,“成绩中的已知条件运用能否有误?”,“能否脱漏了什么?算错了什么?”等等。值得留意的是,关于反省时呈现两种答案不确定的状况时,普通而言,“最先想起的才是正确答案”。
C. 2018贵州省中考数学试卷附答案解析
2018的贵州省中考已经确定时间,相信各位初三的同学都在认真备考,数学的备考过程离不开数学试卷。下面由我为大家提供关于2018贵州省中考数学试卷附答案解析,希望对大家有帮助!
2018贵州省中考数学试卷一、选择题
本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.大米包装袋上 的标识表示此袋大米重( )
A. B. C. D.
【考点】正数和负数.
【分析】利用相 反意义量的定义计算即可得到结果.
【解答】解:+0.1表示比标准10千克超出0.1千克;—0.1表示比标准10千克不足0.1千克。故此袋大米重
故选A.
2.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )
A. B. C. 4 D. 0
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答 】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,又是中心对称图形,故此选项正确.
故选:D.
3.下列式子正确的是( )
A. B.
C. D.
【考点】整式的加减.
【分析】根含没拆据整式的加减运算法则求解.
【解答】解:
C、利用加法的交换律,故此选项正确;
故选:C
4.如图,梯形 中, , ( )
A. B. C. D.
【考点】平行线的性质.
【分析】由两直线平行,同旁内角互补即可得出 结果.
【解答】解:∵AB∥CD,∠A=45°,
∴∠ADC=180°-∠A=135°;
故选:B.
【点评】本题考查了平行线的性质;熟记两直线平行,同旁内角互补是解决问题的关键.
5.已知 组四人的成绩分别为90、60、90、60, 组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )
A.平均数谈枣 B.中位数 C.众数 D.方差
【考点】方差;平 均数;中位数;众数.
【分析】根据 组和 组成绩,求出中位数,平均数,众数,方差差,即可做出判断.
【解答】解: 组:平均数=75,中位数=75,众数=60或90,方差=225
组:平均数=75,中位数=75,众数=70或80,方差=25
故选D.
6.不等式 的解集在数轴上表示正确的是( )
【考点】解一元一次不等式;在数轴上表示不等式的解集.
【分析】根据解不等式的方法可以求得不等式 的解集,从而可知哪个选项是正确的.
【解答】解:
故选C.
7.国产大飞机 用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( )
A. B. C. D.5003
【考点】平均数
【分析】根据知识点:察敬一组数据同时加上或减去某个数a,平均数也相应加上或减去某个数a,进行简化计算。
【解答】解:数据5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,同时减去5000,得到新数据:98,99,1,2,-10,-80,80,10,-99,-98
新数据平均数:0.3
∴原数据平均数:5000.3
故选A.
8.使函数 有意义的自变量的取值范围是( )
A. B. C. D.
【考点】函数,二次根式
【分析】根据知识点:二次根式 ,被开方数 求解
【解答】
解:3-x≥0
x≤3
故选C.
9.已知二次函数 的图象如图所示,则( )
A. B. C. D.
【考点】二次函数的图象.
【分析】根据二次函数图象的开口方向、对称轴、与y轴的交点情况分析判断即可得解.
【解答】解:抛物线开口向下知a<0;与y轴正半轴相交,知c<0;对称轴,在y轴右边x=﹣ >0,b>0,B选项符合.
故选B.
【点评】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键.
10.矩形的两边长分别为、,下列数据能构成黄金矩形的是( )
A. B. C. D.
【考点】黄金分割.
【分析】黄金矩形的长宽之比为黄金分割比,即
【解答】解:选项D中a:b=
故选D.
11.桌面 上放置的几何体中,主视图与左视图可能不同的是( )
A.圆柱 B.正方体 C.球 D.直立圆锥
【考点】简单几何体的三视图.
【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.
【解答】解:B、正方体主视图与左视图可能不同;
故选:B.
【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.
12.三角形的两边 的夹角为 且满足方程 ,则第三边长的长是( )
A. B. C. D.
2018贵州省中考数学试卷二、填空题
(每题5分,满分40分,将答案填在答题纸上)
13.中国“蛟龙号”深潜器下潜深度为7062米,用科学计数法表示为 米.
【 考 点 】 科学记数法—表示较大的数.
【 分 析 】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【 解 答 】
解:7062=7.062×103,
【 点 评 】此题考查科学 记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14.计算:2017×1983 .
【 考 点 】 平方差公式.
【 分 析 】对2017和1983变形再运用平方差公式.
【 解 答 】
解:2017×1983=
【 点 评 】灵活运用平方差公式简便计算.
15.定义: , , ,若 , ,则 .
【 考 点 】 新定义运算.
【 分 析 】新定义运算: 表示两个集合所有数的集合
【 解 答 】
解:
【 点 评 】根据题目给出的定义进行计算.
16.如图,在正方形 中,等边三角形 的顶点 、 分别在边 和 上,则 度.
【 考 点 】 正方形、等边三角形、全等三角形.
【 分 析 】证明△ABE≌△ADF,得∠BAE=15°, 75°
【 解 答 】
解:∵正方形
∴AD=AB,∠BAD=∠B=∠D=90°
∵等边三角形
∴AE=AF,∠EAF=60°
∴△ABE≌△ADF
∴∠BAE=∠DAF=15°
∴∠AEB=75°
【 点 评 】熟记正方形和等边三角形性质,全等三角形判定定理,并灵活运用.
17.方程 的解为 .
【考点】分式方程的解.
【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x2﹣1进行检验即可.
【解答】解:两边都 乘以x2﹣1,得:2﹣(x+1)=x2﹣1,
整理化简
x2+x-2=0
解得:x1=﹣2,x2=1
检验:当x=﹣2时,x﹣3=﹣5≠0,当x=1时,x2﹣1=0,
故方程的解为x=﹣2,
故答案为:﹣2.
18.如图,在平行四边形 中,对角线 、 相交于点 ,在 的延长 线上取一点 ,连接 交 于点 ,若 , , ,则 .
【考点】平行四边形,相似三角形.
【分析】利用平行四边形性质,及两次全等求AF.
【解答】解:过点O作OG//AB,
∵平行四边形 中
∴AB=CD=5,BC=AD=8,BO=DO
∵OG//AB
∴△ODG∽ △BDA且相似比为1:2,△OFG∽△EFA
∴OG= AB=2.5,AG= AD=4
∴AF:FG=AE:OG=4:5
∴AF= AG=
19.已知 , ,若白棋 飞挂后,黑棋 尖顶,黑棋 的坐标为( , ).
【考点】平面直角坐标系.
【分析】根据 , 建立平面直角坐标系,再求黑棋 的坐标
【解答】
解:根据 , ,建立平面直角坐标系如图所示
∴C(-1,1)
20.计算 的前 项的和是 .
【考点】数列.
【分析】对原式进行变形,用数列公式计算.
【解答 】
解:
2018贵州省中考数学试卷三、解答题
(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)
21.计算:(1) ;
(2) .
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【解答】
解:
22.如图,在边长为1的正方形网格中, 的顶点均在格点上.
(1)画出 关于原点成中心对称的 ,并直接写出 各顶点的坐标.
(2)求点 旋转到点 的路径(结果保留 ).
【考点】坐标与图形变化-旋转(中心对称);弧线长计算公式.
【分析】(1)利用 中心对称画出图形并写出坐标;(2)利用弧线长计算公式计算点 旋转到点 的路径.
【解答】解:(1)图形如图所示,
23.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.
(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;
(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.
【考点】画树状图或列表求概率.
【分析】(1)画树状图或列表时注意:所有情况不可能是 ;(2)12种情况中,同一味道4种情况.
【解答】解:
24.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设 米.
(1)依题意列出二元一次方程组;
(2)求出甲乙两施工队每天各铺设多少米?
【考点】列二元一次方程组解应用题.
【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y(2)解方程组.
【解答】解:
25.如图, 是 的直径, ,点 在 上, , 为 的中点, 是直径 上一动点.
(1)利用尺规作图,确定当 最小时 点的位置(不写作法,但要保留作图痕迹).
(2)求 的最小值.
【考点】圆,最短路线问题.
【分析】(1)画出A点关于MN的称点 ,连接 B,就可以得到P点
(2)利用 得∠AON=∠ =60°,又 为弧AN的中点,∴∠BON=30°,所以∠ ON=90°,再求最小值 .
【解答】解:
26.已知函数 , ,k、b为整数且 .
(1)讨论b,k的取值.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求 与 的交点个数.
【考点】一次函数,反比例函数,分类讨论思想,图形结合思想.
【分析】(1)∵ ,分四种情况讨论
(2)根据分类讨论k和b的值,分别画出图像.
(3)利用图像求出4个交点
【解答】解:
猜你喜欢:
1. 2018年语文中考题答案
2. 2017中考数学试卷真题含答案
3. 2018年中考语文一模试题及答案
4. 2018七年级历史月考检测试卷附答案贵州
5. 2018年中考生物试题及答案
D. 2018泰州中考数学试卷及答案解析
2018年初三的同学们,中考已经离你们不远了,数学试卷别放着不做,要对抓紧时间复习数学。下面由我为大家提供关于2018泰州中考数学试卷及答案解析,希望对大家有帮助!
2018泰州中考数学试卷一、选择题
本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2的算术平方根是()
A. B. C. D.2
【答案】B.
派铅试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是 ,故选B.
考点:算术平方根.
2.下列运算正确的是()
A.a3•a3=2a6 B.a3+a3=2a6 C.(a3)2=a6 D.a6•a2=a3
【答案】C.
试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.
考点:整式的运算.
3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】C.
考点:中心对称图形;轴对称图形.
4.三角形的重心是()
A.三角形三条边上中线的交点
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点
D.三角形三条内角平行线的交点
【答案】A.
试题分析:三角形的重心是三条中线的交点,故选A.
考点:三角形的重心.
5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()
A.平均数不变,方差不变 B.平均数不变,方差变大
C.平均数不变,方差变小尘卖好 D.平均数变小,方差不变
【答案】C.
试题分析: ,S2原= ; ,S2新= ,平均数不变,方差变小,故选C.学#科网
考点:平均数;方差.
6.如图,P为反比例函数y= (k>0)在第一象限内图象上的配慎一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()
A.2 B.4 C.6 D.8
【答案】D.
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∵∠AOB=135°,
∴∠OBE+∠OAE=45°,
∵∠DAO+∠OAE=45°,
∴∠DAO=∠OBE,
∵在△BOE和△AOD中, ,
∴△BOE∽△AOD;
∴ ,即 ;
整理得:nk+2n2=8n+2n2,化简得:k=8;
故选D.
考点:反比例函数综合题.
2018泰州中考数学试卷二、填空题
(每题3分,满分30分,将答案填在答题纸上)
7. |﹣4|= .
【答案】4.
试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4.
考点:绝对值.
8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 .
【答案】4.25×104.
考点:科学记数法.
9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为 .
【答案】8.
试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8.
考点:整式的运算;整体思想. 学#科.网
10. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”)
【答案】不可能事件.
试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.
考点:随机事件.
11.将一副三角板如图叠放,则图中∠α的度数为 .
【答案】15°.
试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.
考点:三角形的外角的性质.
12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为 cm2.
【答案】3π.
试题分析:设扇形的圆心角为n,则:2π= ,解得:n=120°.所以S扇形= =3πcm2.
考点:扇形面积的计算.
13.方程2x2+3x﹣1=0的两个根为x1、x2,则 的值等于 .
【答案】3.
试题分析:根据根与系数的关系得到x1+x2=﹣ ,x1x2=﹣ , 所以 = =3.
考点:根与系数的关系.
14.小明沿着坡度i为1: 的直路向上走了50m,则小明沿垂直方向升高了 m.
【答案】25.
考点:解直角三角形的应用.
15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为 .
【答案】(7,4)或(6,5)或(1,4).
考点:三角形的外接圆;坐标与图形性质;勾股定理.
16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为 .
【答案】6
试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,
在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′= =6 .21世纪教育网
考点:轨迹;平移变换;勾股定理.
2018泰州中考数学试卷三、解答题
(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)
17.(1)计算:( ﹣1)0﹣(﹣ )﹣2+ tan30°;
(2)解方程: .
【答案】(1)-2;(2)分式方程无解.
考点:实数的运算;解分式方程.
18. “泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:
根据以上信息完成下列问题:
(1)补全条形统计图;
(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.
【答案】(1)详见解析;(2)960.
(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200× =960人.
考点:条形统计图;用样本估计总体.21世纪教育网
19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
【答案】 .
考点:用列表法或画树状图法求概率.
20.(8分)如图,△ABC中,∠ACB>∠ABC.
(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);
(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.
【答案】(1)详见解析;(2)4.
试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.
试题解析:
(1)如图所示,射线CM即为所求;
(2)∵∠ACD=∠ABC,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴ ,即 ,
∴AD=4. 学@科网
考点:基本作图;相似三角形的判定与性质.
21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).
(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;
(2)如图,一次函数y=﹣ x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.
【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1
考点:一次函数图象上点的坐标特征;一次函数的性质.
22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
【答案】(1)详见解析;(2)2.
由题意2× ×(x+1)×1+ ×x×(x+1)=6,
解得x=2或﹣5(舍弃),
∴EF=2.
考点:正方形的性质;全等三角形的判定和性质;勾股定理.
23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.
试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.
试题解析:
=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)
=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)
=﹣a2+12a+280
=﹣(a﹣6)2+316
当a=6,w最大,w=316
答:这两种菜品每天的总利润最多是316元.
考点:二元一次方程组和二次函数的应用.
24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为 的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
【答案】(1)详见解析;(2)18 .
试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理
∵∠POB=2∠D,
∴∠POB=2∠C,
∵∠CPO=90°,
∴∠C=30°,
∵BD∥CP,
∴∠C=∠DBA,
∴∠D=∠DBA,
∴BC∥PD,
∴四边形BCPD是平行四边形,
∴四边形BCPD的面积=PC•PE=6 ×3=18 .学科%网
考点:切线的性质;垂径定理;平行四边形的判定和性质.
25.阅读理解:
如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.
例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.
解决问题:
如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.
(1)当t=4时,求点P到线段AB的距离;
(2)t为何值时,点P到线段AB的距离为5?
(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)
【答案】(1) 4 ;(2) t=5或t=11;(3)当8﹣2 ≤t≤ 时,点P到线段AB的距离不超过6.
试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC
则AC=4、OC=8,
当t=4时,OP=4,
∴PC=4,
∴点P到线段AB的距离PA= = =4 ;
(2)如图2,过点B作BD∥x轴,交y轴于点E,
①当点P位于AC左侧时,∵AC=4、P1A=5,
∴P1C= =3,
∴OP1=5,即t=5;
②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,
∴∠CAP2+∠EAB=90°,
∵BD∥x轴、AC⊥x轴,
∴CE⊥BD,
(3)如图3,
①当点P位于AC左侧,且AP3=6时,
则P3C= =2 ,
∴OP3=OC﹣P3C=8﹣2 ;
②当点P位于AC右侧,且P3M=6时,
过点P2作P2N⊥P3M于点N,
考点:一次函数的综合题.
26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).
(1)若一次函数y1=kx+b的图象经过A、B两点.
①当a=1、d=﹣1时,求k的值;
②若y1随x的增大而减小,求d的取值范围;
(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;
(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.
当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.
试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m的关系式.
试题解析:
(1)①当a=1、d=﹣1时,m=2a﹣d=3,
所以二次函数的表达式是y=﹣x2+x+6.
∵a=1,
∴点A的横坐标为1,点B的横坐标为3,
把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,
∴A(1,6),B(3,0).
将点A和点B的坐标代入直线的解析式得: ,解得: ,
所以k的值为﹣3.
把x=a+2代入抛物线的解析式得:y=a2+6a+8.
∴A(a,a2+6a+8)、B(a+2,a2+6a+8).
∵点A、点B的纵坐标相同,
∴AB∥x轴.
(3)线段CD的长随m的值的变化而变化.
∵y=﹣x2+(m﹣2)x+2m过点A、点B,
∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,
∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).
∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)
考点:二次函数综合题.
猜你喜欢:
1. 2017年中考数学试卷含答案
2. 2017中考数学试卷真题含答案
3. 中考数学规律题及答案解析
4. 中考数学仿真模拟试题附答案
5. 江苏省泰州市中考语文试卷及答案
E. 2018年中考数学答题技巧分析:缺步解答
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经敬乱档程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫陪悉“大题拿小分”,确实是个好亮乱主意。
F. 2018年中考数学答题技巧分析:辅助解答
一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必弊迅不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。书写也是租薯此辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。有些选择题,“大胆手逗猜测”也是一种辅助解答,实际上猜测也是一种能力。