导航:首页 > 数字科学 > 关于数学专业的大学专业有哪些专业知识

关于数学专业的大学专业有哪些专业知识

发布时间:2023-05-30 21:30:56

Ⅰ 大学数学系都学什么

数学系的主要课程有:数学分析、高等代数、解析几何、普通物理、概率论、数学建模、近世代数、高等几何、微分几何、常微分方程、复变函数、实变函数、初等数学研究、数学实验等。

一、应用数学的概念:

应用数学是应用性较强的诸数学学科或分支的统称。

泛指一切数学理论和方法中应用性较强的部分。

二、培养方向:

该专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

三、专业介绍:

该专业旨在培养数学与应用数学的高素质拔尖人才,培养现代数学顶峰的攀登者,培养在我国现代化建设中担当大任的数学和应用数学领军人物。

在课程设置上,尤其在一、二年级,强调正规扎实的数学基础训练,为学生将来成才和多方向的发展奠定坚实宽广的根基。

同时引导学生深入到数学最重要的分支,接触现代数学思想和框架,拓宽知识领域,激发求知和探索兴趣。

在积极向上,宽松自由的环境中,培养学生高度的创新意识和能力,达到专与博、严与活的高度和谐统一。

该专业含数学、应用数学、概率统计三个方向,学生可以选修不同侧重的课程。

除开设国内一流的标准的数学课程之外,还根据师资优势和数学发展,在现代数论、代数、几何、分析、微分方程、概率统计及计算机科学等方面,开设了有特色的系列课程。

Ⅱ 大学数学与应用数学专业都学什么知识

主要学习如下课程:
数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
(2)关于数学专业的大学专业有哪些专业知识扩展阅读
概率和统计:
作为数学的分支,概率学是研究随机事件的一门科学技术,涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。
概率论与数理统计是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。

Ⅲ 大学本科数学专业的,都要学哪些科目

专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研卜咐时要用到的。

近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。

另外其他的一缓弊顷些常见的分支包括复变函数、常微分、运筹、最优化,数学模型。

Ⅳ 大学数学专业有哪些

大学数学专业有以下:

一、数学与应用数学

1、主干学科:数学。

二、信息与计算科学

1、主干学科:数学、计算机科学与技术。

2、主要课程:数学基础课(分析、代数、几何)、概率统计、数学模型、物理学、计算机基础(计算概论、算法与数据结构、软件系统基础)、信息科学基础、理论计算机科学基础、数值计算方法、计算机图形学、运筹与优化等。

3、主要实践性教学环节:包括生产实习,科研训练,毕业论文(毕业设计)等,一般安排10~20周。

4、学年:4年。

5、授予学位:理学学士。

6、培养目标:本专业培养具有良好的数学素养,掌握信息科学和计算科学的基本理论和方法,受到科学研究的初步训练,能运用所学知识和熟练的计算机技能解决实际问题,能在科技、教育和经济部门从事研究、教学和应用开发和管理工作的高级专门人才。

Ⅳ 大学数学专业学哪些内容

1.课程名称:解析几何AnalyticGeometry总学时:64周学时:4学分:3开课学期:一修读对象:必修预修课程:无内容简介:《解析几何》是学科基础课程,是所有数学专业及应用数学专业的主要的基础课。

它是用代数的方法来研究几何图形性质的一门学科。

《解析几何》包括向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线的一般理论与二次曲面的一般理论等。

2.课程名称:数学分析Ⅰ-ⅣMathematicalAnalysisⅠ-Ⅳ总学时:334周学时:4,4,6,5学分:18开课学期:一,二,三,四修读对象:必修预修课程:无内容简介:《数学分析》是学科基础课程,是所有数学专业及应用数学专业的第一基础课。

它提供了利用函数分析和解决实际问题的方法,培养学生严谨的抽象思维能力,为学习其他学科奠定基础。

3.课程名称:高等代数Ⅰ-ⅡAdvancedAlgebraⅠ-Ⅱ总学时:198周学时:6,5学分:11开课学期:二,三修读对象:必修预修课程:无内容简介:《高等代数》是学科基础课程,是所有数学专业及应用数学专业的主要的基础课。

4.课程名称:常微分方程OrdinaryDifferentialEquation总学时:72周学时:4学分:4开课学期:五修读对象:必修预修课程:数学分析高等代数内容简介:《常微分方程》作为一门专业基础课,是数学理论特别是微积分学联系实际的重要渠道之一。

5.课程名称:复变函数plexAnalysis总学时:72周学时:4学分:4开课学期:五修读对象:必修预修课程:数学分析高等代数内容简介:《复变函数》是专业基础课,是函数论方面的基础课程,它是数学分析的后继课程。

这门课程主要内容是复数与复变函数,解析函数,复变函数的积分,解析函数的幂级数表示法,解析函数的洛朗展式志孤立奇点,留数理论及其应用,共形映射,解析延拓和调和函数。

6.课程名称:概率论与数理统计总学握戚时:90周学时:5学分:5开课学期:五修读对象:必修预修课程:数学分析高等代数内容简介:《概率论与数理统计》是专业基础课团埋,本课程是唯一一门处理随机现象的数学类必修课程,本课程研究随机现象的统计规律性及统计推断,设置这一门课的目的在于使学生初步掌握处理随机现象的基本理论和方法,并获得解决和分析某些实际问题的能力。

7.课程名称:初等数学研究ElementaryMathematicsResearch总学时:72周学时:4学分:4开课学期:六修读对象:必修预修课程:数学分析高等代数内容简介:《初等数学研究》是专业基础课,初等数学研究主要包括初等代数和初等几何两部分内容,它是一门古老而又充满生命力的学科,是师范院校数学专业的必修课程。

面向新课程改革,本课程比较系统地阐述了初等数学的基础理论,其中包括 *** 与逻辑、数与式的理论、函数、方程与不等式的理论、公理化方法与图形的演绎推理、几何变换、几何的向量结构及坐标法、排列组合与概率统计初步以及中学数学解题策略等内容。

8.课程名称:近世代数ModernAlgebra总学时:72周学时:4学分:4开课学期:六修读对象:必修预修课程:高等代数内容简介:《近世代数》是专业基础课,近世代数是近代数学的重要分支。

近世代数比较全面介绍了群、环、域的理论及一些具体的群、环和域。

9.课程名称:实变函数与泛函分析总学时:72周学时:4学分:4开课学期:六修读对象:必修预修课程:高等代数内容简介:《实变函数与泛函分析》是专业基础课,是是数学各专业的一门重要分析基础课,它是学生进一步学习其它分析数学分支和科学研究必不可少的基础知识,通过实变函数部分的学习,应使学生较好的掌握测度与积分这个基本的数学工具,特别是极限与积分顺序的交换。

并且在一定程度上掌握集的分析方法。

泛函分析是学习和研究近代数学的纯粹数学与应用数学,数理经济数值计算及现代工程技术理论。

10.课程名称:微分几何DifferentialGeometry总学时:54周学时:3学分:3开课学期:五修读对象:选修预修课程:数学分析常微分方程内容简介:《微分几何》是素质拓展课塌皮蚂程,是以数学分析为主要工具研究空间形式的一门学科,是几何学的一个分支,由于微分几何这门学科在科学技术和其他自然科学的领域中日趋广泛的渗透和应用,它的生命力至今还很旺盛,从内容和方法上不断有所更新。

11.课程名称:拓扑学Topology总学时:54周学时:3学分:3开课学期:六修读对象:选修预修课程:数学分析内容简介:拓扑学是专业拓展课程,是基础性的数学分支,它研究几何图形在连续变形(即拓扑变换)下保持不变的性质,即拓扑性质。

目前,拓扑学的概念、方法和理论已经广泛地渗透到现代数学以及邻近学科的许多领域,并且有了日益重要的应用。

12.课程名称:数学物理方程总学时:36周学时:2学分:2开课学期:七修读对象:必修预修课程:数学分析、高等代数、微分方程内容简介:《数学物理方程》是专业拓展课程。

它综合运用前期数学知识解决有关的实际问题,是联系数学建模和方程问题求解的桥梁。

主要内容有三类最重要的偏微分方程(Laplace方程,热传导方程,波动方程)的数学模型和各种定解条件的提出;求解偏微分方程的基本方法:分离变量法、积分变换法(Fourier变换和Laplace变换)、行波法、基本解和Green函数法和两类最常用的特殊—柱函数(Bessel方程、Bessel函数性质及应用)和球函数(Legendre方程和Legendre函数性质和应用)。

13.课程名称:数学建模MathematicalModeling总学时:54(18+36)周学时:1+2学分:3开课学期:五修读对象:选修预修课程:数学分析,高等代数,概率论与数理统计,计算方法内容简介:《数学建模》是专业拓展课程。

主要培养学生综合运用数学知识解决实际问题的能力与意识。

主要内容有数学建模的一般方法(初等模型),微分方程与差分方程模型理论与方法及应用(种群生态学模型、动态经济学模型、动力系统稳定性问题)、模式识别模型方法、理论与应用(代数方法、概率统计方法、人工神经网络方法),综合决策模型与应用(层次分析法模型)。

14.课程名称:运筹学OperationalResearch总学时:36周学时:2学分:2开课学期:七修读对象:选修预修课程:高等数学、线性代数内容简介:《运筹学》是素质拓展课程,主要内容包括:运筹学简史、线性规划与目标规划、整数规划、非线性规划、动态规划、图论与网络分析、排论队简介、存贮论、对策论与决策论简介。

15.课程名称:离散数学DiscreteMathematics总学时:54周学时:3学分:3开课学期:五修读对象:选修预修课程:数学分析高等代数内容简介:《离散数学》是专业拓展课程,本课程的目的是介绍离散数学的基本概念和原理,提高学生抽象思维和逻辑推理的能力。

16.课程名称:计算方法putingMethod总学时:54周学时:3学分:3开课学期:六修读对象:必修预修课程:数学分析、高等代数、微分方程内容简介:《计算方法》又称《数值分析》,是专业拓展课程,是研究各种数学问题求解的数值计算方法。

学习此课的目的是设计算法求出数学模型的近似解。

17.课程名称:数学软件与实验总学时:36(18+18)周学时:1+1学分:3开课学期:七修读对象:选修预修课程:数学分析,高等代数,微分方程,计算方法内容简介:《数学软件与实验》是专业拓展课程。

本课程围绕对Mathematica软件的学习介绍15个左右的数学实验:微积分基础、圆周率π的计算、最佳分数近似值、数列与级数、素数、几何变换、无体运动、方程的迭代求解、函数极值的线搜索、最速降线、分形的概念与产生、混沌现象、计算机模拟、密码、初等几何定理的计算机证明等。

18.课程名称:计算机网络puterworks总学时:54(18+36)周学时:1+2学分:3开课学期:五修读对象:选修预修课程:大学计算机基础Ⅰ-Ⅱ,内容简介:《计算机网络》是素质拓展课程。

主要让学生掌握各种计算机网络的相关知识,网络的设计理论、设计思路和方法技巧,了解主流的计算机网络协议,网络的发展趋势以及它的应用前景。

19.课程名称:C语言程序设计ProgramminginCLanguage总学时:54(36+18)周学时:2+1学分:3开课学期:五修读对象:必修预修课程:大学计算机基础Ⅰ-Ⅱ内容简介:《C语言程序设计》是素质拓展课程。

它是一种常用的程序设计语言,是编程人员最广泛使用的工具。

20.课程名称:模糊数学FuzzyMathematics总学时:54周学时:3学分:2开课学期:六修读对象:选修预修课程:数学分析、高等代数、概率论、数理统计、离散数学内容简介:《模糊数学》是素质拓展课程,模糊数学是以模糊 *** 论为基础而发展起来的一门新兴学科,是用数学处理各种各样的模糊现象。

主要内容包括:模糊集的基本概念,模糊模式识别,模糊聚类分析,模糊综合评判,集值统计与程度分析,综合分析,综合评判的逆问题等。

模糊数学扩大了数学的应用领域。

21.课程名称:数学专业英语SpecialtyEnglishinMathematics总学时:54周学时:3学分:2开课学期:七修读对象:选修预修课程:数学分析、高等代数、大学英语内容简介:《数学专业英语》是素质拓展课程,数学专业英语是为学生进一步深造数学,进行数学方献检索工作或掌握计算机软件和科学计算中经常碰到的数学英语词汇而设立的一门课程。

熟悉数学专业英语,就等于掌握了研究数学的一种语言工具,并为科技翻译培养素质。

22.课程名称:偏微分方程PartialDifferentialEqua第8/10页

tions总学时:54周学时:3学分:2开课学期:七修读对象:选修预修课程:数学分析高等代数常微分方程内容简介:《偏微分方程》是素质拓展课程,它是一门应用基础学科,一方面与现代数学中分析、几何等基本理论密切相关,同时又在物理、力学、生物、化学等自然科学及经济、金融等社会科学中有重要的应用背景。

23.课程名称:竞赛数学petitionMathematics总学时:54周学时:3学分:2开课学期:七修读对象:选修预修课程:中等数学解题研究内容简介:《竞赛数学》是素质拓展课程,作为一门数学教育学科,奥林匹克数学本身并不是一个数学分支,它是一个类似于中学数学、大学数学、趣味数学等这样的特定数学范畴。

24.课程名称:数学基础教育案例研究总学时:54周学时:3学分:2开课学期:七修读对象:选修预修课程:教育心理学,中学数学教材教法内容简介:《数学基础教育案例研究》是素质拓展课程,主要内容包括案例的数学教育主题与背景分析、数学教育情景描述(或演示)、数学教育注释和案例诠释与研究。

物理专业的数学课程有:

1.数学物理方法

Mathematical

课程编号:22189906课程编号:课程性质:专业必修课课程性质:课程内容:数学是物理学的表述语言。

复变函数论和数学物理方程是学习理论物理课程的重课程内容:要的数学基础。

该课程包括复变函数论和数学物理方程两部分。

复变函数论部分介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。

数学物理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔函数及其性质以及格林函数的基本知识。

该课程有着逻辑推理抽象严谨的特点,同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。

Ⅵ 大学中与数学有关的专业有哪些

楼主,你好
基本上大学的工科专业都与数学有关,然后对数学要求要求比较高的专业有:力学、电子、计算机,然后另外就是理科专业:数学及应用数学、物理、化学(基础)。
希望楼主采纳,不懂可以继续问~

Ⅶ 大学数学专业都有哪些课程

按专业以后的发展喊知方向来分:

1、纯粹的数学专业主干课程:初等数论、概率论与数理统计、数学教学论、小学数学教材教法、数学分析选讲、复变函数、近世代数、高等代数选讲、数学教育学等、数学与应用数学。

2、应用数学主要课程灶渗迅:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。

3、信息与计算科学专业主要课程:数学分析、高等代数、几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复隐此变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。

Ⅷ 和数学有关的大学专业有哪些

第一个:数学与应用数学

毫无疑问,数学与应用数学这个专业是和数学息息相关的,它主要是注重培养一些能够掌握数学科学的基本理论方法,但是想要学好这门学科之前,同学们要学好有关数学的基础知识,这也是对同学们最基本的要求,其实从专业名字上就能看出这个专业与数学有关。

还可以报其他类专业

1、人工智能类:数学是建立人工智能模型最重要的基础之一。在国内就业前景还不蛮不错的,IT行业的转型工业,机器人等等都是今年的热点;

2、建筑学:建筑设计师必须了解建筑材料力学结构知识,需要学代数、微积分、线性规划,统计学。建筑学,无非毕业就是去工地,学好学差的都要亲临现场指挥也好,动手也罢;

3、计算机专业:如高级语言程序C++离散数学数据结构。就业面还是比较广泛的,一般有编程,做程序员。软件工程,网络技术,总之与计算机有关的都是很吃香的。

Ⅸ 与数学有关的专业 哪些专业和数学有关

1、数理基础科学专业

数理基础科学专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。

2、数学教育专业

培养掌握数学教育的基本理论、基本知识和基本技能,具有初步数学教学研究能力和应用能力的中小学数学教师。主要专业课程包含数学分析续论、高等代数、复变函数论、常微分方程、初等数论、近世代数、中学数学方法论等。

3、应用数学

应用数学专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

4、计算数学

计算数学是由数学、物理学、计算机科学、运筹学与控制科学等学科交叉渗透而形成的一个理科专业。计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法等理论问题。

5、统计学专业

统计学主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化分析、总结,做出推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。应用的范围十分广泛。

Ⅹ 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。

一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。

它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。

这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。

现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的扒嫌分支学科,它的研究对象是复变数的函数。

复变函数论历史悠久,内容丰富,理论十分完美。

它在数学许多分支、力学以及工程技术科学中有着广泛的应用。

复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。

在很长时间里,人们对这类数不能理解。

但随着数学的发展,这类数的重扒并要性就日益显现出来。

复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstractalgebra)又称近世代数(Modernalgebra),它产生于十九世纪。

伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。

代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。

初等代数学是指19世纪上半叶以前发展的代数方程理论,主春此手要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。

他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。

他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

阅读全文

与关于数学专业的大学专业有哪些专业知识相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050