1. 小学数学课程标准内容
2011年版的小学数学课程标准分为四个部分:
第一部分:前言。
一、课程性质
二、课程基本理念
三、课程设计思路
第二部分:课程目标
一、总目标
二、学段目标
第三部分:课程内容
第一学段(1~3年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第二学段(4~6年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第三学段(7~9年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第四部分:实施建议
一、教学建议
二、评价建议
三、教材编写建议
四、课程资源开发与利用建议
附录:
附录1:有关行为动词的分类
附录2:课程内容及实施建议中的实例
2. 小学数学新课标准的基本内容是什么
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度 等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。
(2)小学数学课程内容标准是什么扩展阅读:
学新课标准定义了各个学段中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容标准。
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准
确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并
进行交流的重要工具。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮
助人们作出合理的推断和预测。
“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解 决与生活经验密切联系的、具有一定挑战性和综合性的
问题,以发展他们解决问题的能力,加深对“数与代数”“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。
3. 小学数学新课程标准主要讲了哪些内容
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
http://www.teacherclub.com.cn/tresearch/a/1498836906cid00001
4. 小学数学新课标的主要内容有哪些
截止2018年目前小学数学新课标的主要内容如下:
义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
5. 义务教育数学课程标准是什么
义务教育数学课程标准是如下:
1、获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。
2、初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解学好数学的信心。
4、课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。
5、课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
4、课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。
6. 教资面试必看:小学数学1-6年级课程标准
义务教育小学数学1-6年级课程标准
第一学段(1~3年级)
一、数与代数
(一)数的认识
1. 在现实情境中理解万以内数的意义,能认、读、写万以内的数,能用数表示物体的个数或事物的顺序和位置。
2. 能说出各数位的名称,理解各数位上的数字表示的意义;知道用算盘可以表示多位数。
3. 理解符号穗尘<,=,>的含义,能用符号和词语描述万以内数的大小。
4. 在生活情境中感受大数的意义,并能进行估计。
5. 能结合具体情境初步认识小数和分数,能读、写小数和分数。
6. 能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。
7. 能运用数表示日常生活中的一些事物,并能进行交流。
(二)数的运算滚腔
1. 结合具体情境,体会整数四则运算的意义。
2. 能熟练地口算20以内的加减法和表内乘除法,能口算百以内的加减法和一位数乘除两位数。
3. 能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
4.认识小括号,能进行简单的整数四则混合运算(两步)。
5. 会进行同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
6. 能结合具体情境进行估算,并会解释估算的过程。
7. 经历与他人交流各自算法的过程。
8. 能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释。
(三)常见的量
1. 在现实情境中,认识元、角、分,并了解它们之间的关系。
2. 能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短。
3. 认识年、月、日,了解它们之间的关系。
4. 在现实情境中,感受并认识克、千克、吨,能进行简单的单位换算。
5. 能结合生活实际,解决与常见的量有关的简单问题。
(四)探索规律
二、图形与几何
(一)图形的认识
1. 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。
2. 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体。
3. 能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
4. 通过观察、操作,初步认识长方形、正方形的特征。
5. 会用长方形、正方形、三角形、平行四边形或圆拼图。
6. 结合生活情境认识角,了解直角、锐角和钝角。
7. 能对简单几何体和图形进行分类。
(二)测量
1. 结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。
2. 在实践活动中,体会并认识长度单位千米、米、厘米,知道分米、毫米,能进行简单的单位换算,能恰当地选择长度单位。
3. 能估测一些物体的长度,并进行测量。
4. 结合实例认识周长,并能测量简单图形的周长,探索并掌握长方形、正方形的周长公式。
5. 结合实例认识面积,体会并认识面积单位厘米2、分米2、米2,能进行简单的单位换算。
6. 探索并掌握长方形、正方形的面积公式,会估计给定简单图形的面积。
(三)图形的运动
1. 结合实例,感受平移、旋转、轴对称现象。
2. 能辨认简单图形平移后的图形。大族衫
3. 通过观察、操作,初步认识轴对称图形。
(四)图形与位置
1. 会用上、下、左、右、前、后描述物体的相对位置。
2. 给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,会用这些词语描绘物体所在的方向。
三、统计与概率
1. 能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系。
2. 经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画、表格等)呈现整理数据的结果。
3. 通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息。
四、综合与实践
1.通过实践活动,感受数学在日常生活中的作用,体验能够运用所学的知识和方法解决简单问题,获得初步的数学活动经验。
2.在实践活动中,了解要解决的问题和解决问题的办法。
3.经历实践操作的过程,进一步理解所学的内容。
第二学段(4~6年级)
一、数与代数
(一)数的认识
1. 在具体情境中,认识万以上的数,了解十进制计数法,会用万、亿为单位表示大数。
2. 结合现实情境感受大数的意义,并能进行估计。
3. 会运用数描述事物的某些特征,进一步体会数在日常生活中的作用。
4. 知道2,3,5的倍数的特征,了解公倍数和最小公倍数;在1~100的自然数中,能找出10以内自然数的所有倍数,能找出10以内两个自然数的公倍数和最小公倍数。
5. 了解公因数和最大公因数;在1~100的自然数中,能找出一个自然数的所有因数,能找出两个自然数的公因数和最大公因数。
6. 了解自然数、整数、奇数、偶数、质(素)数和合数。
7. 结合具体情境,理解小数和分数的意义,理解百分数的意义;会进行小数、分数和百分数的转化(不包括将循环小数化为分数)。
8. 能比较小数的大小和分数的大小。
9.在熟悉的生活情境中,了解负数的意义,会用负数表示日常生活中的一些量。
(二)数的运算
1.能计算三位数乘两位数的乘法,三位数除以两位数的除法。
2.认识中括号,能进行简单的整数四则混合运算(以两步为主,不超过三步)。
3.探索并了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法的分配律),会应用运算律进行一些简便运算。
4.在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
5.能分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步)。
6.能解决小数、分数和百分数的简单实际问题。
7.在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题。
8.经历与他人交流各自算法的过程,并能表达自己的想法。
9.在解决问题的过程中,能选择合适的方法进行估算。
10.能借助计算器进行运算,解决简单的实际问题,探索简单的规律。
(三)式与方程
1.在具体情境中能用字母表示数。
2.结合简单的实际情境,了解等量关系,并能用字母表示。
3. 能用方程表示简单情境中的等量关系(如3x+2=5,2x-x=3),了解方程的作用。
4.了解等式的性质,能用等式的性质解简单的方程。
(四)正比例、反比例
1.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。
2.通过具体情境,认识成正比例的量和成反比例的量。
3.会根据给出的有正比例关系的数据在方格纸上画图,并会根据其中一个量的值估计另一个量的值。
4.能找出生活中成正比例和成反比例关系量的实例,并进行交流。
(五)探索规律
探索给定情境中隐含的规律或变化趋势。
二、图形与几何
(一)图形的认识
1.结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。
4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。
6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图。
9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(二)测量
1.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°,45°,60°,90°角。
2.探索并掌握三角形、平行四边形和梯形的面积公式,并能解决简单的实际问题。
3.知道面积单位:千米2、公顷。
4.通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式,并能解决简单的实际问题。
5.会用方格纸估计不规则图形的面积。
6.通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
7.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
8.体验某些实物(如薯仔等)体积的测量方法。
(三)图形的运动
1.通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。
2.通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90°(参见例36)。
3.能利用方格纸按一定比例将简单图形放大或缩小。
4.能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案。
(四)图形与位置
1.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
2.能根据物体相对于参照点的方向和距离确定其位置。
3.会描述简单的路线图。
4.在具体情境中,能在方格纸上用数对(限于正整数)表示位置,知道数对与方格纸上点的对应(参见例38)。
三、统计与概率
(一)简单数据统计过程
1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。
2.会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。
3.认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观、有效地表示数据(参见例39)。
4.体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义。
5.能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。
6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
(二)随机现象发生的可能性
1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果。
2.通过试验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能进行交流(参见例42)。
四、综合与实践
1. 经历有目的、有设计、有步骤、有合作的实践活动。
2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3.在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4. 通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
以上就是关于教资面试必看:小学数学1-6年级课程标准的相关内容分享,希望对各位想要报考教师资格证的考生们有所帮助,如果您想要了解更多教师资格证考试相关内容,欢迎及时关注本平台哦!
7. 小学数学新课标的主要内容有哪些
截止2018年目前小学数学新课标的主要内容如下:
1.
义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
2.
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
3.
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
4.
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
8. 二年级数学新课标的内容标准
二年级数学新课标的内容有:
一、在知识与技能方面:
1.主要是使学生掌握 100 以内笔算加、减法的计算方法,能够正确地进行计算。
二、在数学思考方面:
1、能运用生活经验,对有关数学信息作出解释,并初步学会用具体的数据描绘现实世界中的现象。
2、在掌握 100 以内笔算加、减法的估算过程中,形成估计物体长度的差并意识。
3、在认识长度单位厘米和米的过程中,建立长度观念,在会用刻度尺量物体的长度的同时,形成估计物体长度的意识。
4、在探累排列和组合的过程中m形成有顺序地、全面地思考问题的意识。在解决问题这一维度。
9. 小学数学新课程标准
第1篇:小学数学新课程标准基本理念
1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
第2篇:小学数学新课程标准
一、前言
《全日制义务教育数学课程标准(修定稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。根据《义务教育法》、《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学、评价、教材编写)提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估、和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。
二、设计理念
数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。为此,制定了《标准》的基本理念与设计思路。
三、基本理念
数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容要贴近学生的生活,有利于学生经验、思考与探索。内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯、掌握有效的学习方法。学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。教师教学应该以学生的认知发展水平和益友的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。要处理好教师讲授和学生自主学习的关系,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经验。学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,尽力信心。信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的有机结合。要充分考虑计算器、计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
第3篇:小学数学新课程标准2015
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估、和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。
数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。
10. 小学数学的课程标准是什么
1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
2、初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
3、体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心
4、具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
(10)小学数学课程内容标准是什么扩展阅读:
义务教育阶段的数学学习目标:
1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。