⑴ 在数学中,“∈”这个符号是什么意思
元素与集合的关系符号是:∈。
属于,数学符号为“∈”,表示元素和集合之间的关系。若a∈A,则a属于集合A,a是集合A中的元素。若a∉A,则a不属于集合A,a不是集合A中的元素。在立体几何中,“∈”这个符号用来表示点与直线、平面之间的位置关系。
集合
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。集合中元素的数目称为集合的基数。
以上内容参考:网络——集合
⑵ 数学的集合:先属于,不属于,包含,真包含都是什么意思
一、属于,不属于是指元素与集合之间的关系。
如a属于A表示a是集合A的元素,不属于则不是。
二、包含,包含于,真包含于则是集合与集合之间的关系。
例如:A包含B是指B在A里面,即B的元素都是A的元素.而A包含于B是指A在B里面,即A的元素都属于B。
真包含和真包含于的关系和前面的相似.但此时A与B的元素是确定不等的,A真包含B时,A中至少有一个元素不属于B,而A真包含于B时,B中至少有一个元素不属于A。
(2)数学属于的意思是什么意思是什么意思是什么意思是什么意思扩展阅读:
集合中元素的特性:
一、确定性:
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
二、互异性:
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次 。
三、无序性:
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
⑶ ∈是什么数学符号
“∈”是数学中的一种符号,读作“属于”。
如果a是集合A的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集A中的元素,就说a不属于(not belong to)集合A,记作a∉A。
例如,用a表示“1~20以内的所有素数”组成的集合,则有3∈a。
关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系)。
“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
⑷ 数学定义是什么意思
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。