导航:首页 > 数字科学 > 中学数学思想有哪些并简述其内涵

中学数学思想有哪些并简述其内涵

发布时间:2023-06-01 23:12:06

初中数学思想有哪些

八大思想: 1.分类思想
2.整体思想
3.化规转化思想
4.数形结合思想
5.方程思想
6.函数思想
7.统计思想
8.建立数学模型

Ⅱ 高中数学中都有哪些数学思想

高中数学怎么学?高中数学难学吗?

数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?

老师让孩子上黑板做题

数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.

Ⅲ 初中数学四大思想是什么

一、转化思想:
在解较复杂或条件较分散的几何问题时,往往需要通过某种转化手段(例如:作适当的辅助线),讲生疏的问题转化成熟悉的问题,将复杂的问题转化成简单的问题,将分散的条件进行适当集中,从而使线段与线段,角与角,形与形之间建立联系,使问题得到解决.
二、方程思想:
当几何中的证明题和计算题所求的未知量不易直接求出时,可根据题目所给的条件,结合图形,联想到有关定理,选择便于把条件结论、图形和定理、定义结合起来的未知量设为x,从多角度寻求等量关系(图形的位置与定理的关系,已知条件与定理的关系等等)建立方程式或方程组通过解方程,使问题得以解决.
三、数形结合思想:
在直角坐标系中的几何图形,往往可以借助点的坐标,直线的解析式,函数的性质,将平面几何图形与函数图像有机地结合起来,通过形来理解数,利用数来理解形,借助图形的直观,加深对数量关系的认识,从而简化几何中的计算问题
四、分类讨论思想

Ⅳ 数学思想包括哪些内容

数学思想包括的内容有:

函数方程思想:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。

整体思想:

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

化归思想:

在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想。

隐含条件思想:

没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。

类比思想:

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

建模思想:

为了更具科学性,逻辑性,客观性和可重复性地描述一个实际现象,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

归纳推理思想:

由某类事物的部配盯烂分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理。

极限思想:

极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。

Ⅳ 数学基本思想有哪些

高中数学基本数学思想
1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证
2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证
3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.
4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.
5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.
在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.
中学数学中还有一些数学思想,如:
集合的思想;
补集思想;
归纳与递推思想;
对称思想;
逆反思想;
类比思想;
参变数思想
有限与无限的思想;
特殊与一般的思想.
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.
数学解题中转化与化归思想的应用
数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.

策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.

例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.
A、150 B、147 C、144 D、141

分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.
10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D).

策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.
例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( )
A、 B、 C、 D、

分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为 ,所以正方体棱长为1,从而外接球半径为 ,应选(A).

策略三:未知向已知转化
又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.
例3:在等差数列 中,若 ,则有等式
( 成立,类比上述性质,在等比数列 中, ,则有等式_________成立.

分析:等差数列 中, ,必有 ,
,
故有 类比等比数列 ,因为
,故 成立.
逻辑划分思想
例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.
解 A= : 分两种情况讨论
(1)B=¢,此时a=0;
(2)B为一元集合,B= ,此时又分两种情况讨论 :
(i) B={-1},则 =-1,a=-1
(ii)B={1},则 =1, a=1.(二级分类)
综合上述 所求集合为 .
例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.
例题3、已知 ,试比较 的大小.
【分析】
于是可以知道解本题必须分类讨论,其划分点为 .

小结:分类讨论的一般步骤:
(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);
(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;
(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);
(4)归纳小结,综合得出结论.(主元求并,副元分类作答).

Ⅵ 初中数学思想主要有哪些

初中数学思想方法
二、认识初中数学思想方法.
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓.
1、数形结合的思想 数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙.”数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1].在数学教学中,许多定律、定理及公式等常可以用图形来描述.而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路.如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系.例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图:
依据线路图,我们可以找出其中的等量关系
S小明=S小彬+10,然后设未知数列方程即可.
2、分类讨论的思想 分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想.对数学内容进行分类,可以降低学习难度,增强学习的针对性.因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想.如当 取何实数时,对 的值的分类讨论:当 时,;当 <3时,.
3、转化思想 数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想.因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法.例如:当 时,求 的值.该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式 .
4、函数的思想 辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学.华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中.因此,教学上要有意识、有计划、有目的地培养函数的思想方法.例如:进行求代数式的值的教学时,通过强调解题的第一步“当……时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值.如代数式x2-4中,当x=1时,则x2-4=-3;当x=2,则x2-4=0……通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径.
这是四个最常用的
其他还有:归纳、演绎等等思想

阅读全文

与中学数学思想有哪些并简述其内涵相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050