导航:首页 > 数字科学 > 高中数学应用题怎么做

高中数学应用题怎么做

发布时间:2023-06-02 09:33:11

㈠ 高中数学题型与解题技巧

常见高中数学几类题型解题技巧

选择题
对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:
1 回忆法。直接从记忆中取要选择的内容。
2 直接解答法。多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。计算证明题
解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。在做这种题时,有一些共同问题需要注意:
1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。应用性问题的审题和解题技巧 新教学大纲指出:要增强用数学的意识,一方面通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律,另一方面更重要的是能够运用已有的知识将实际问题抽象为数学问题,建立数学模型。近几年的数学高考加大了应用性试题的考查力度,数量上稳定为两小一大;质量上更加贴近生产和生活实际,体现科学技术的发展,更加
贴近中学数学教学的实际。解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
最值和定值问题的审题和解题技巧 最值和定值问题
最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大�小 值以及取得最大�小 值的条件;定值着眼于变量在变化过程中的某个不变量。近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大�小 值作为设问的方式。分析和解决最值问题和定值问题的思路和方法也是多种多样的。命制最值问题和定值问题能较好体现数学高考试题的命题原则。应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

参数兼有常数和变数的双重特征,是数学中的“活泼”元素,曲线的参数方程,含参数的曲线方程,含参变系数的函数式、方程、不等式等,都与参数有关。函数图象与几何图形的各种变换也与参数有关,有的探究性问题也与参数有关。参数具有很强的“亲和力”,能广泛选用知识载体,能有效考查数形结合、分类讨论、运动变换等数学思想方法。应对参数问题要把握好两个环节,一是搞清楚参数的意义�几何意义、物理意义、实际意义等 ,特别是具有几何意义的参数,一定要运用数形结合的思想方法处理好图形的几何特征与相应的数量关系的相互联系及相互转换。二是要重视参数的取值的讨论,或是用待定系数法确定参数的值,或是用不等式的变换确定参数的取值范围。
代数证明题的审题和解题技巧代数证明题

近几年的数学高考注意控制立体几何试题的难度,推理论证能力的考查重点转移到代数与解析几何�特别是代数证明题。函数的性质及相关函数的证明题;数列的性质及相关数列的证明题;不等式的证明题,尤其是与函数或数列相综合的不等式的证明题等,都频频出现在近几年的数学高考试题之中。应对代数证明题,一是要全面审视各相关因素的关系,注意题目的整体结构;二是要完整、准确表述推理论证的过程,对于具有几何意义的代数证明题,要妥善处理几何直观、数式变换及推理论证的关系,注意防止简单运用“如图可知”替代推理论证。

探究性题的审题和解题技巧

探究性问题
近几年的数学高考贯彻了“多考一点想,少考一点算”的命题意图,加大试题的思维量,控制试题的运算量,突出对数学的“核心能力”——思维能力的考查。有些试题设计了新颖的情景,有些试题设计了灵活的设问方式,有些试题设计了新的题型结构�如存在性问题;发现结论且证明结论的问题;寻求并证明充分条件或必要条件的问题等 ,这样的试题有助于克服死记硬背和机械照搬,优化考查功能。应对探究性问题要审慎处理“阅读理解”和“整体设计”两个环节,首先要把题目读懂,全面、准确把握题目提供的所有信息和题目提出的所有要求,在此基础上分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,再落笔解题。在思维受阻时,及时调整解题方案。切忌一知半解就动手解题。

㈡ 做数学应用题的技巧

高数学并不是简简单单就能学好,升入高中以后,高中数学变得更抽象了,很多知识同学们理解起来开始有困难了。那么接下来给大家分享一些关于做数学应用题的技巧,希望对大家有所帮助。

做数学应用题的技巧

一.归一问题解答含义及 方法

牢记题中的数量关系,仔细阅读应用题给出的意思。

含义:

在解答应用题时,先要求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

数量关系:

总量÷份数=1份数量 1份数量×所占份数=所求几份的数量

另一总量÷(总量÷份数)=所求份数

解答思路及方法:

先求出单一量,以单一量为标准,求出所要求的数量。

二.归总问题解答含义及方法

含义:

解题时,常常先找出“总数量”,然后再根据 其它 条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

数量关系:

1份数量×份数=总量 总量÷1份数量=份数

总量÷另一份数=另一每份数量

解题思路和方法: 先求出总数量,再根据题意得出所求的数量。

三.和差问题解答含义及方法

含义:

已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

数量关系:

大数=(和+差)÷ 2 小数=(和-差)÷ 2

解题思路和方法:

简单的题目可以直接套用公式;复杂的题目变通后再用公式。

四.和倍问题解答含义及方法

含义:

已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

数量关系:

总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数

较小的数 ×几倍 = 较大的数

解题思路和方法:

简单的题目直接利用公式,复杂的题目变通后利用公式。

五.差倍问题解答含义及方法

含义:

已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

数量关系:

两个数的差÷(几倍-1)=较小的数

较小的数×几倍=较大的数

解题思路和方法:

简单的题目直接利用公式,复杂的题目变通后利用公式。

六.倍比问题解答含义及方法

含义:

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

数量关系:

总量÷一个数量=倍数 另一个数量×倍数=另一总量

解题思路和方法:

先求出倍数,再用倍比关系求出要求的数。

高一数学 提分技巧

一、预习是聪明的选择

最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。

二、基本概念是根本

基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。

三、作业可巩固所学知识

作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。

四、难题要独立完成

想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)

五、加倍递减训练法

通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。

六、考前不要做新题

考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的 复习方法 。

七、良好心态

考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态

八、考试从审题开始

审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。

九、学会使用演算纸

要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。

十、正确对待难题

难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。

高一数学基础差该怎么学习

一、快速掌握基础知识

对于基础薄弱的同学来说,课本就是他们第一步需要掌握的提分法宝。想要提高数学成绩,你需要记熟数学课本里的每一个知识点,看懂每一个例题,一章一章的进行掌握。

你可以先记公式,背熟之后在接着研究例题,最后去看课后习题,用例题和习题去思考该怎么解,不要急着去计算,先想就好,然后在翻看课本看公式定理是怎么推导的,尤其是过程和应用案例。对于课本中的典型问题,更是要深刻的理解,并学会解题后 反思 。这样才能够深刻理解这个问题,跳出题海这个怪圈。

做好错题笔记,记录容易犯的错误,分析错误的原因,找到正确的办法。不要盲目的去做题,必须要在搞清楚概念的基础上做这些才是有用的。

二、学会运用基础知识

在掌握数学基础知识的同时,要学会知识的运用,这样你才能在考试中拿到分数。高中数学学习的特点是:速度快、容量大、方法多。而这对于基础差的同学来说,有时听了会记不住,或是记住了却不会解题。这时候就需要我们把笔记记好,不需要一字不落的记下老师说的话,只需要把关键的思路和结论记下来就可以了,课后在去整理、回看笔记,这也是再学习的一个过程。

想要学好数学题就必须要多做题,只有做了一定题目才能学好数学,而且做题是高中数学学习的主旋律。但是这里的做题不是盲目做题,而是要看题思考,学会思考、反思、 总结 才是学习数学的王道。

其实数学解题并不难,分析题干,挖掘已知条件,寻找这些条件之间有什么关系,得出一个有用的结论,这个结论是我们所要用来解决问题的关键,这就是数学解题的形式。所以想要学好数学,主要靠的是答题的思路,而不是作出某道题的方法。


做数学应用题的技巧相关 文章 :

★ 做数学应用题的技巧

★ 做数学应用题时的方法高中

★ 六年级数学应用题解题技巧(3)

初中数学应用题解题方法与技巧

★ 应用题初中数学重点解题技巧有哪些

★ 初中数学应用题重点解题技巧

★ 小学数学应用题解题方法

★ 做小学数学作业各类题型的方法

★ 六年级数学应用题解题基本思路

㈢ 高中数学题的解题方法和答题策略

高中数学题的解题方法

方法一、调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

方法五、一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

方法六、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法五、一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是 “怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

方法六、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法七、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

方法八、面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

TOP

方法七、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

方法八、面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

TOP

方法九、以退求进,立足特殊,发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

方法十、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

方法十一、回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

方法十二、应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

高中数学的解题的策略

一、三点建议

1、保持内紧外松的临战状态

①考生在考试前一、二周陆续放松,进入临战状态,并进行生物钟的调节,让自己的作习时间安排得与高考同步。在这段时间内,要保持情绪的稳定、降低学习强度,增加睡眠时间,进行轻微的活动,增加体质,熟悉考试细则,作不要的物质准备,在一种宁静的气氛中,只要做复习的识证性的复习工作。比如回想学科的整体结构,疏通知识网络,背诵重要的定理公式,查阅笔记中的重要内容等,发现缺漏时,千万不要焦急,应从容不迫坐下来翻看一下资料。经过强化训练后的静息,是记忆恢复的最佳选择,相反这段时间还做难题,加班加点,只会带来精神的过渡紧张疲劳,直接或间接、有形或无形的影响考场的发挥。至于作习时间进入工作状态并迅速达到高潮。

② 考离家前,要按预先列好的清单带好一应用具,如准考证、文具等,否则进土考场后又为忘这忘那引起不必要的焦虑和恐慌,影响考试的发挥。(如:进入考场后发现缺了什么或者什么找不到,急得脸面发红,冷汗直冒,未考先慌,未战先败这种现象时有发生) 。

③ 考试过程要放得开,挺得住,精神集中,心态和平,善于暗示自我,还要认识到个别题目不会做,个别科目未能发挥应有的水平都是正常现象,不必大惊小怪,惊慌失措,自乱阵脚,要保持良好的心态,全身心投入,坚持做好每一题,用好每一分每一秒,不到时间决不放弃,发扬“生命不止、战斗不息”的顽强作风,相信坚持就是胜利。树立“我难、你难、他也难,大家都难不算难”的全局意识。

2、使用适应高考的策略

高考的性质与平时的训练不同,高考的形式也与平时的作业有很大的区别,如时间的限制性,分数的选拔性,评分的阶段性等,都要我们采取一些不同平时的解题措施,再次提两条建议:

① 由于高考时间的限制,因此拿到题后要迅速解决“从何处下手”, “向何方前进”这两个基本问题,这与平时作业没有时间限制有很大的区别,高考有明显的速度要求。据资料统计:一套高考数学试题通常控制在2000个印刷符号,若以每分钟300—400个符号的速度审题,约需5—7分钟,考虑到有题目要反复阅读,实际需要时间不少于12分钟, 书写主要用于解答题约3000个印刷符号,若按每分钟150个印刷符号书写大约28分钟,也就是说看清楚土模后直接抄写答案都得40分钟,留给思考、草算、文字组织和复查的时间只要80分钟,平均到每道题(通常22道题,近30个问)保证不了3分钟,为了给解答留下思考时间,选择、填空题就应在一、二分钟之内解决,解决不了就跳过去,不能纠缠解答题中容易题也只能边想边写,节省时间。对于客观题与主观题的时间分配应以4:6为宜,具体到每一道题,一旦找到了解题思路,书写要见简明扼要,快速规范不能拉泥带水,罗嗦重复,更不能添蛇画足,注意知识的得分点,对于设计初中知识的可以直接写出结论,须知“言多必失”,多写一步就是多出现一个错误的机会,就多占用了后面高分题的时间,叫做“潜在丢分”。如解应用题或排列组合问题时,在引进所需字母后可写。依题意”直接写出数字模型,话件题目较长时,多用。原点二”,这就节约了很多时间。

② 灵活机动,由于高考题量大,且实行“分段评分”,所以考生必须作心理换位,从平时做作业的“全做全对”要求,转到立足于完成部份题目的部份上来,并积极争取“分段得分”。即合理应用数学解题策略,使所掌握的知识能充分表示出来,并转化为得分点,比如:分解分步的解题策略;引理或中途点的解题策略;以退求进 的解题策略;正难则反的解策略;从特殊到一般的解题策略等解题技术,使得进可以全题解决,退可以分段得分。

3、 运用应对选拔的考试技术

高考是选拔性考试,从技术上考虑,有两点建议,即制定科学的解题程序,树立“进入录取线”的全局意识。这就是说要尽量避免因“顺序答题、自然书写”所带来的缉私户性的失分,对次提出五点建议:

① 提前进入角色;

②迅速摸清题型;

③执行“三个”循环;

④做到“四先四后”;

⑤答题”一快一慢” 。

对每条建议作如下说明:

①提前进入角色是那到试卷前半小时,应让细胞开始简单数学活动,让大脑进入单一的数学情景,这不仅能转移临考前的焦虑,而且有利于把最佳竞技状态带进考场,这个过程跟体育比赛中“热身”一样,具体操作如下:清点用具是否齐全,把一些重要的数据,常用的公式,重要的定理过过电影,同学之间互问互答一些不大复杂的问题,但要注意提出的问题不能太难,否则回出现紧张情绪。

②迅速摸清“题情”。刚拿到试卷,一般心情比较紧张,思考问题尚未进入高潮,不要匆忙答题,可先从头 尾正面反面览一遍全卷,弄清全卷有几页,几题,印刷是否完整、清晰,尤其认真读试卷说明与各类题型的指导语。其主要作用是:

a、了解试卷的全貌和整体结构,便于从科学的知识体系产生联想,激活回忆,提高分析问题的能力和解决问题的效率;

b、顺手解答,即顺手解答那些一眼看得出结论的简单选择题、填空题,寻找自己比较熟悉的内容,易上手会做的题目,主要能很快答出一、二道题,情绪就会迅速稳下来,有“旗开得胜”的愉悦,有一种增强信心的作用,他将会鼓励自己能更充分的发挥。

c、粗略分类,给“先后难”做好准备。

d、心中有数,即题目有数,各学科知识心中有数,每一道题得分情况有数,不怕难题不得分,就怕每题都扣分。

③执行“三个循环”,这就是讲完整解答一套试题可经过三个循环,一头一尾两个小循环,各用时10分钟左右,中间一个大循环用时近100分钟。

第一循环通览全卷,先作简单的第一遍解答是第一个小循环,按高考题的难度比例3:5:2计算,可先做30%的容易题,获二、三十分,同时把情绪稳定下来,将思维推向高潮。

第二个循环用时100分钟,基本完成全卷,会做的都做完了,在这个大循环中,要有全局意识,能整体把握,并要执行“四先四后”, “一快一慢”的原则。

第三个循环查收尾,用大约10分钟的时间来检查解答并实施“分段得分”,对于大多数考生来说,不可能字第二个循环中答对所有题目,因此要对那些答不全或答后一关,即使做完了题目,也要复查,防止“会而不对,对而不全”,这一步是正常发挥乃至超水平发挥不可缺少的一步,否则将遗憾终身。

④做到“四先四后”,考虑到满分卷极少数的,绝大多数考生都只能答部份题或题目的部份,执行好“四先四后”的技术是明智的。即:

a、先易后难:就是说先做简单题,后做困难题,跳过啃不动的题目,对于低分题不能耽误时间过长,千万防止“前面难题久攻不下,后面易无暇顾及” 。

b、先熟后生:通览全卷,即可看到较多有利条件,也可观到较多不利因素,特别是后者,不要惊慌失措,万一试题偏难(比如2003年高考卷),首先要学会暗示自己,安慰自己“我难、你难、他也难,大家都难不算难,要镇定,不要紧张”,先做那些容易掌握比较到家,题目比较熟悉的题目,这样容易产生精神亢奋,会使人情不自禁的进入境界,展开联想,促进转化,拾级登高,达到预想不到的目的。

c、先高后低:就是说要优先处理高分题,特别是在考试后半时间,更要注意解题的时间效益,两道都会做的题,应先做高分题,后做低分题,尽可能减少时间不够而失分其次要注意前面低分题久攻不下,后面高分容易题无时间光顾这种想象发生。

d、先同后异:就是说考虑将同学、同类型的题目集中处理,这些题目常常用到同样的数学思想和类似的思考方法,甚至同一数学公式,把它们和起来,一齐处理,思考比较集中,方法知识网络比较系统,有利于提高单位时间的小,避免兴奋中心的过快转移带来不利的影响。

⑤答题“一快一慢”:这就是说审题要慢,答题要快。

审题要慢:是说题目本身包含无数个信息,问题是你将如何将这无数个信息通过加工、整理成你的有用的东西。这就是需要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义、解答形式、数据要求等各方法弄懂这一步不要怕慢。“成在审题,败在审题” 。

二、掌握高考解题的思维规律

研究表明:中学教材是高考试题的基本来源,每年平均有50%--80%的试题是课本的类型、变题。少量高难题找不到课本的原型,但实际也是按课本知识所能达到的范围来设计的,因此解高考题与平时作业不同之处在于他在特殊环境下和特定的条件下完成的,其中最显着的特点是严格受时间的限制,因此解高考题必须做到:

①迅速解决“从何处着手”;

②迅速解决“向何方前进”;

③立足中下题目,力争高水平;

④立足一次成功,重复复查环节。

因为高考时间较为紧张,不可能做大量细微的接后检验,所以要立足与一次成功,稳扎稳打,字字正确,步不有据努力提高解题的成功率,最好每进行一次书写,都用眼睛的余光扫视上下两行,顺便检查有无差错。

复查应“以粗为主,粗细结合”,其主要目的在于看题目是否遗漏﹖题意是否弄错﹖要求是否符合﹖解题过程是否合理﹖步骤是否完整﹖结果是否科学﹖其复查方法主要有:复查核对、多解对照、逆向运算、观测估算、特值检验、条件检验、逻辑检验等。

三、注意加强分段得分技术

高考试题的有一个明显特点是“进门容易、出门难”,因此,在解高考试题分段中又一个技术是分段得分。

①分解分步----缺步解答:解题中遇到一个很难的问题,实在啃不动,一个明智的策略是,将他分解为一系列的子问题,先解决问题的一部分,把这种情况反映出来,说不定起到“柳暗花明” 的效果,也就是说在高考解答中能做几步算几步,能解决什么程度就表达到什么程度,最后虽不能拿满分,但部份分总是可以拿的。

②以退求进---退步解答: “以退求进”是一个重要的解题策略,如果我们不能马上解决的所面临的问题,那么可以从一般到特殊,从抽象到具体,从复杂到简单,从整体退到部分,从较强的结论退到较弱的结论,总之退到一个能够解决的问题上来。这叫做“退一步,海阔天空” 。

③正难则反---倒步叫做“正难则反”也是一个重要的解题策略,顺推有困难时就逆推,直接证明有困难时就从见解证明,从左推有困难时就从右推,从条件有困难时就从结论出发,这种死亡方式叫逆向思维,效果很好。

④扫清外围---辅助解答:一道题目的完整解答,即有主要的实质步骤,也要有辅助性的步骤,实质性的步骤找不到,找辅助解答的步骤也是明智的,有时间甚至是必可少的。辅助解答的内容十分广泛,如准确作图,条件翻译等。

⑤大胆猜测—认真作答:猜测是一种能力,最后就是在结实过程中实在没有办法,无从下手,不妨就用猜想来“进可攻全守,退可分步得分” 。


阅读全文

与高中数学应用题怎么做相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:702
乙酸乙酯化学式怎么算 浏览:1370
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1008
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1367
中考初中地理如何补 浏览:1257
360浏览器历史在哪里下载迅雷下载 浏览:669
数学奥数卡怎么办 浏览:1347
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1446
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:821
武大的分析化学怎么样 浏览:1210
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1604
下列哪个水飞蓟素化学结构 浏览:1386
化学理学哪些专业好 浏览:1450
数学中的棱的意思是什么 浏览:1015