㈠ “数学期望”指的是什么
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。
以大数据眼光看问题体现了数学期望中的大量试验出规律,不能光看眼前或特例,对一种现象不能过早下结论,要多听、多看从而获得拿个隐藏在背后的规律;
以大概率眼看光问题对应数学期望中的概率加权,大概率对应的取值对最后之结果影响大,所以当有了一个目标,为了实现它,就要找一条实现起来概率最大的路径。
(1)数学期望相当于什么扩展阅读
应用:
1)随机炒股
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股
趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。
只有止损线<15%时,趋势投资才有可能赢。但是止损线过低,就会形成频繁交易,一方面交易成本增加,另一方面交易者的判断力下降,也就是胜率必然下降,那么最终的下场好不到哪去。
3)价值投资
由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。
㈡ 怎样理解数学期望
1.什么是数学期正穗望?
数学期望亦称期望、期望值等。在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和。
这是什么意思呢?假如我们来玩一个游戏,一共52张牌,其中有4个A。我们1元钱赌一把,如果你铅此抽中了A,那么我给你10元钱,否则你的1元钱就输给我了。在这个游戏中,抽中的概率是113(452)113(452),结果是赢10元钱;抽不中概率是12131213,结果是亏1元钱。那么你赢的概率,也就是期望值是−213−213。这样,你玩了很多把之后,一算账,发现平均每把会亏−213 −213元。一般在竞赛中,若X是一个离散型的随机变量,可能值为x1,x2x1,x2……,对应概率为p1,p2p1,p2……,概率和为1,那么期望值E(X)=∑ipixiE(X)=∑ipix
Proof:
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
Var(X+Y)=E(X2+Y2+2XY)−E2(X)−E2(Y)−2E(X)E(Y)
因为X,YX,Y互相独立
E(XY)=E(X)E(Y)
E(XY)=E(X)E(Y)
代入上式便得
Var(X+Y)=Var(X)+Var(Y)
Var(X+Y)=Var(X)+Var(Y)
从证明过程看独立条件必不可少。由于方差是由期望定义的,所以方差的一切性质可由期望导出,可见期望的概念要比方差重要。
㈢ 数学期望是什么意思
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。
数学期望按照定义,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,y,z,...则称该随机变量为离散型随机变量。
应用
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润,并求出最大利润的期望值。
以上内容参考:网络-数学期望
㈣ 数学期望是什么概念
期望一般都是在概率计算的时候用的,其实质就是所有的可能值乘以其相应概率相加得到的一个平均值的。可以说是概率平均值。
㈤ 数学期望是什么意思
数学期望(或期望值)是在统计意义下随机变量的一种数学术语,表示在多次随机试验中,每次试验的结果所带来的期望结果的总和。
对于一个森肢离散的卜链随机变量X,它的期望值(也称为数学期望)可以表示为:
E(X)=∑xP(X=x)
其中x是随机变量X的取值,P(X=x)是随机变量X取值为x的概率。
对于一个连续的随机变量X,它的期望值可以表示为:
E(X)=∫xf(x)dx
其中f(x)是随机变量X的概率密度函数。
期望值是随机变量的一个此弊世有用的数学特征,在统计意义下表示随机变量的中心位置。它是随机变量的平均值,但并不是所有的随机变量都有期望值,因为期望值只有在满足一定条件时才存在。