A. 数学建模是什么啊
在我的理解:
数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。他的意义在于利用数学方法解决实际问题。
如果想要学好数学建模必须学习:高数,线性代数,C语言,还涉及到模糊数学(部分),同时在建模过程中学会MATLAB和lingo等软件的使用。能够培养一个人的开发能力和自主学习能力,还是很有用处的。
数学模型(姜启源、谢金星) 很适合新手,在内容编排上也是国产风格,按模型知识点分类,一块一块讲,面面俱到。
数学建模方法与分析.(新西兰)Mark.M.Meerschaert 它是典型的外国教材风格,从一个模型例子开始,娓娓道来,跟你讲述数学建模的方方面面,其中反复强调的一个数学建模五步法,后来细细体会起来的确很有道理,看完大部分这本书的内容,就可以体会并应用这个方法了。
B. 大学数学建模是什么意思
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
C. 数学建模是什么,他有什么用
数学建模是数学分支,作用是根据结果去解决实际问题。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
应用:
自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。
经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
D. 什么是数学建模
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模是使用数学模型解决实际问题。
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
E. 数学建模 什么意思
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
(5)数学建模能力是什么意思扩展阅读:
建模过程
1、模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
2、模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3、模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
4、模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
5、模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
6、模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
7、模型应用与推广
应用方式因问题的性质和建模的目的而异,而模型的推广就是在现有模型的基础上对模型有一个更加全面的考虑,建立更符合现实情况的模型。
F. 如何培养数学建模能力
新课标下如何培养学生的数学建模思想
数学模型是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表示出来的一种数学结构。初中数学中常见的建模方法有:对现实生活中普遍存在的等量关系(不等关系),建立方程模型(不等式模型);对现实生活中普遍存在的变量关系,建立函数模型;涉及图形的,建立几何模型;涉及对数据的收集、整理、分析,建立统计模型……这些模型是常见的,并且对它们的研究具有典型的意义,这也就注定了这些内容的重要性。在中学阶段,数学建模的教学符合数学新课程改革理念。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。学生通过观察、收集、比较、分析、综合、归纳、转化、构建、解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,感受到数学的广泛应用。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,使学生能成为学习的主体。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。下面谈谈建模思想在初中数学教学中几种常见的应用类型。
一、 方程思想
新课标要求能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界中的一个有效的数学模型。这即是方程的思想在初中数学中的应用,它要求我们能够从问题的数量关系入手,运用数学语言将问题中的条件转化为方程(组),然后通过解方程(组)使问题获解。例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理?此题是华东师大出版的数学(九年级上)课本P38习题第9题。它考查了同学们在现实生活的背景中理解基本数量关系的能力。
显然,方程的思想就是把未知量用字母表示和已知量一起参与建立等式,构造方程的方法来解决问题,体现了未知和已知的统一。所以,在建立方程模型时,应着重培养学生如何学会寻找问题中的已知量、未知量的关系建立方程。随着课改的深入,数学命题更重视以社会热点,焦点和日常生活中熟悉的事实为背景,构建一个有鲜活背景,与社会,生活相关的数学应用题。因此,在课堂教学中,教师应引导学生关注生活,生产中的数学问题,尽可能给学生提供合适的问题,鼓励学生积极参与解决问题的活动,自己去探索,研究,从而强化应用数学的意识,并且具备把实际问题转化为数学问题的能力,使学生领会数学建模的思想和基本过程,提高解决问题的能力和信心。
二、不等式(组)的思想
同样的,数学建模思想用于不等式(组),新课标提出了类似的要求。不等式(组)的思想即从问题的数量关系出发,运用条件将问题中的数量关系转化为不等式(组)来解决。
例:某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位。
1) 设原计划租用48座客车x辆,试用x的代数式表示这两个年段学生的总人数。
2) 现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位,请你求出该校这两个年段学生总人数。此题便可通过构建不等关系得以解答。
三、 函数思想
新课标提出,能用适当的函数表示法刻画某些实际问题中变量之间的关系变化,结合对函数关系的分析,尝试对变量的变化规律进行初步预测,能用一次函数,二次函数等来解决简单的实际问题。在学习了正、反比例函数、一次函数和二次函数后,学生的头脑中已经有了这些函数的模型。因此,一些实际问题就可以通过建立函数模型来解决
例:某中学要印刷本校高中录取通知书,有两个印刷厂前来联系制作业务。甲厂优惠条件是每份定价1.5元,八折收费,另收900元制版费;乙厂的收费条件是每份定价1.5元的价格不变,而制版费900元则六折优惠,且甲、乙都规定,一次印刷数量至少是500份,如何根据印数数量选择比较合算的方案?若印刷数量为2000份,应选择哪个?费用是多少?
方案设计题是基础知识与基本技能结合比较紧密的一类应用题。此题不仅充分运用了函数的思想,又用到分类讨论思想。其形式上表述生产、销售、规划等问题十分贴近生活,是近年来中考热点问题。
四、 统计思想
在当前的经济生活中,统计知识的应用越来越广泛。而数学建模思想的应用在统计学方面的研究得到很好的体现。如新课标明确提出:体会用样本估计总体的思想。例:在某树林中100平方米的面积上统计有8棵红枫树,整个树林面积为10000平方米,你能估计整个树林共有多少棵枫树吗?
由以上几种常见数学模型的建立,可以发现数学模型的建立过程大致有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解.因此,在实际课堂教学中,教师应以学生为主体,充分引导学生注意观察生活中的各种现象,充分利用教材的优势,创造性使用教材,努力创设合适的问题情境,让学生投入到解决问题的实践活动中,自己去探索,经历数学建模的全过程,初步领会数学模型的思想和方法,增强数学应用意识,提高学生的创新能力,养成良好的思维品质,使学生学到有用的数学,学到不同的数学。