导航:首页 > 数字科学 > 数学自学方法是什么意思

数学自学方法是什么意思

发布时间:2023-06-05 03:53:12

Ⅰ 数学应该如何自学

第一、“天下武功,唯快不破”,自我经验,在学习数学上同样重要,所谓“快”,是指要在老师讲课前提前学习,注意是学习,而不是预习,要制定学习计划,并坚持每天完成。要提前两个月左右完成学期教科书。让老师的讲课跟在自己后面。快速完成教科书第一遍学习后,剩余的时间干什么——快速进入复习。

第二、整本教科书要多复习几遍,“遍”数多制胜。第一遍自学要细要快,要快于老师讲课。当老师讲课时要认真听,并将老师的讲课作为第一遍的复习,该遍复习要搞清各个疑问,做到“真知”,要不留疑问,彻底搞清教科书中的各知识点,绝不要留死角。

在完成教科书第一遍自学时,自学不能停止,开始自我进行的第一遍复习,与此同时,还会跟随老师讲课进行的复习,对于教课书的学习不要少于五遍,特别是各种例题、公式、定义要多于五遍复习。课本学习是基础,要夯实基础。

第三,数学要多做题,做题多制胜。在进行学习和复习的同时要多做题,做题过程中一定要注意错题,要牢记一点:现在的错题是将来考试时的提分点。对于做错的题,要进行仔细学习总结,搞清错误原因。

关于练习题的选择,建议首先选择所在省市地区的历年的期中、期末和月考的试题,最好是近十年的。其次要可以选择中考、高考大省的历年的期中、期末、月考的试题。

其实,以上三点,适合不仅适合数学的学习,同样适用于物理、化学。以上学习观点,仅是个人学习方法的总结,希望对您能有所借鉴。

Ⅱ 数学怎么自学

高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。
2、正确对待学习中遇到的新困难和新问题
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
3、要提高自我调控的“适教”能力
一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教师的特点,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能跟着老师的惯性运转,被动地接受所学知识和方法。
5、要养成良好的个性品质
要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
6、要养成良好的预习习惯,提高自学能力
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
7、要养成良好的审题习惯,提高阅读能力
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到题目要“宁
停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
8、要养成良好的演算、验算习惯,提高运算能力
学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
9、要养成良好的解题习惯,提高自己的思维能力
数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此要逐步夯实基础,提高自己的思维能力。

Ⅲ 0基础自学数学怎么学

我觉得数学自学还是有难度,不过智商超高的你不妨试试0基础自学数学的方法,下面我为你收集了0基础自学数学的方法的资料,希望对你有所帮助!

0基础自学数学的方法

一、从看题到做题,这是一个很难的习惯改变。

在我看来,看题目是一种偷懒的过程,也是一种自我欺骗: 看似搞定了一本书或者习题册,心理上有了一些成就感, 或者安慰, 却照着真正解题还差很远, 只有能真正掌握, 才会理解这种差距有多大。

二、解题首先请消除畏难心理

题目不是科学上的开放问题, 而是面向学生的, 所以一定有解(极少数出错的题目除外);所有的背景知识,名词都是学过的,所以更不必害怕。 所有的题目都有已知条件, 如果觉得自己不会做, 那么就回忆已经做过的题目和学过的知识, “由这些已知条件能得到什么题目中没有明说的东西?” 也就是获得求解题目的 ”中间量” ;另一方面, 也要仔细品味一下提问, 想想看这个提问是否和已经熟悉的东西等价。 有不少的学生,看到题还没有几分钟,可能也就几秒钟,算了几下,就觉得做不下去, 说 ”不会做”,然后翻看答案, 恍然大悟。 这其实大可不必(要最终杜绝)。知识都是现有的, 我们要做的, 就是为此岸的已知, 和对岸的答案, 搭上一架架用等式连成的桥。

三、要很早就开始做模拟题

考试中涉及的知识, 对于已经快要高中毕业的学生来说是很有限的。差不多每个学生都知道某个定理, 某个公式,而真正让学生们拉开差距的, 并非知识, 而是这种”搭桥”的能力。 高中教育最终面向高考, 就不应该过晚做模拟题, 因为大的题目才能更多的训练”搭桥”能力; 既然解模拟题是一种能力, 而非知识的罗列, 就要及早开始。

虽然一套题涵盖了所有知识, 但是各个题目却还是相对独立的: 有一道大题主要考三角函数, 有一道大题主要考解析几何, 云云。 所以在学过一块知识之后, 就去做模拟题。 这里不主张用那种已经分类的模拟题, 而是像<天利38套>那样整套的题目, 自己分类之后, 试着解答。 因为分类的题目更侧重”知识”,而高考题目更侧重搭桥能力。

四、解题当然要以知识为依托

这就要依靠自己的自学能力, 进行知识的超前学习。 这时就有人反对了, 如果我连上课都跟不上, 谈何超前学习? 其实不然。试想, 作为一个高中生, 你没有再学全等三角形, 没有学平面几何, 那么拿到初中的题目, 你还会像初中刚刚学到的时候那样畏惧吗? 即使不会解, 是不是很有信心的, 翻翻初中课本, 刷刷两下就能解出来呢?

五、超前学习的必要性

高中不再学平面几何, 回头再看初中的平面几何也不觉得难, 这是为什么呢? 这是因为人脑对于认知有一个慢热过程。 当知识已经在脑子里过了很多遍, 大脑有了一定的熟悉, 在这个基础上进行理解会轻松得多。 所以如果超前学习, 在老师讲课的时候, 对于自己就是一个复习。 一个不好理解的知识点, 可能有的同学一旦被卡住, 整节课甚至整个学期都跟不上, 但是如果作为复习, 就轻车熟路。 有些高三学生, 当第一轮复习的时候, 发现原来的知识不过如此, 而高考成绩却还不理想, 就是因为前两年学知识, 后一年才学搭桥解题带来的弊病。

六、教材加上一本好的参考书就足够超前学习

书不在多,理科和文科那种需要”博览群书”不同,把一本好书读透即可。 因此,教材加上一本好的参考书就足够超前学习。 在学习的时候, 通常是定义+定理+例题+习题的模式。把定义看懂, 知道是在描述怎样的一个过程, 看似高深就变得平淡无奇。 例题永远都是最好的习题。 因为能够被选为例题, 一定是因为有代表性, 因此答案详细。 所以为了检测自己是否理解概念, 就捂住答案, 把例题当作习题来做。 对于解不出来的题目, 不要一下子看完答案, 而要在答案帮助自己知道是哪一步卡住了的时候, 再捂上答案自己写下去。

七、只有两类题目能够真正帮助自己的进步

一类是不会的题目, 一类是做错的题目。 不会的题目, 也要试试看, 好搞明白自己到底是哪里被卡住了; 做错的题目, 当然要知道自己是怎么错的。 不能以”马虎”来糊弄过去。 所有这样的题目都要在未来的某一时间重新全部做一遍, 往往让人惊讶的是: 总是还会不停的犯同样的错误。

自学数学的步骤

第一个步骤:买习题册。

选择市面上最好的、你听过的、同学老师推荐的参考书习题册,你先买个至少五本。我一般是买八本十本的,内容不重要,答案一定要全。当然,我会天天被老妈喷,因为99%的书都是空白的……

第二个步骤:看课本。

第一遍就是看,争取把所有的定理、知识点、例题看懂。你肯定有不会的,然后,在目录旁边记下来,直到看完。

第二遍看自己写的目录,结合一堆参考书的例题或习题进行研究,解决不会的地方。有个概念就够,不用完全掌握,不是完全不懂就行。

以高中数学难度,三天就应该对一本课本有个大概感觉了 (我一般就用一天)。

第三个步骤:学一个单元。

知道这学期学什么之后,提前认真的学一个单元。学整学期的,太累,还容易忘。花一个周末学一个单元,基本没啥压力,反正不需要全学会。

接着开始做题。只做单元练习, 单节练学根本不要做。(博宇解释下,一本书会有七八个单节练习和一个单元综合练习)。还是那句话,因为你没学过,能用课本知识解决多少算多少。

我不是天才,肯定都有不会的,那不会的怎么办呢?我的方法是这样,我不是有十本书么,我看别的书进行学题,认真地找类似的题目(高中数学题型就那些,十本书不太可能找不到类似的!!!),然后根本不想,直接看答案,把答案看完了,回过头来再做你原本要做的单元练习,这就等于你重新思考了。

关键是一定要做一题会一题。除了个别压轴题,按照这个方法,你理论上都能自学完教材。智商高的,或者愿意花时间的,应该能全做完,不想研究难题也无所谓。

第四个步骤:重复学习。

你提前学过每个单元,而且做过完整的单元练习了,所以,上课就等于你在复学了!

认真说, 带着记忆听“新课”简直爽到爆!!!

把之前自己不懂的地方注意听听,然后和老师多交流一下,基本就搞定了。上课无聊,那就做书本课后题来巩固记忆,刷熟练度,你会发现这个过程下来简单的不得了。有时间,再把买来的剩下习题册,随便做一两套题 。

Ⅳ 怎么自学数学

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

结构

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。

代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。

Ⅳ 自学高等数学的学习方法

对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的。但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。因此,一定要尽自己最大的努力来学好数学.

在我看来,数学其实是一门非常奇妙而有趣的学问。只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?

课本对于数学来说,是很重要的。我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。

以下是我个人觉得在数学学习过程中非常必要的几点:

1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。概念、定理、公式要在理解的基础上记忆。我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.

最后想谈谈数学这一科目的应试技巧。概括说来,就是"先易后难"。我们常常有这样的体会,头脑清醒的时候,本来一些较难的题也会轻易做出来;相反,头脑混沌的时候,一些简单的题也会浪费很多时间。考试时,遇到拦路虎是不可避免的,停下来有两种可能,一是费了九牛二虎之力终于做出来,但由于耗费了大量时间,接下来或者不够时间做完题目,或者担心时间不够,内心焦急,一时连简单的题也做不出来了;二是还是没有做出来,结果不仅浪费了时间,而且连后面的题也没做完。而先易后难,则是愈做愈有信心,头脑始终保持清醒的状态,或者最后把难题做出,或者至少保证了会做的题不丢分。

2002年10月自考下来,高数工本只考了75分,我望着一尺高的草稿纸,回想近三个月来的日日夜夜,不禁“有所叹焉!”遂将一些心得,形成文字,没有整理,希望有兴趣一阅的朋友批评、交流。


2002年8月,我决心自考计算机应用专业,老婆不反对、不支持、不打击、只出钱。当月报考了高数工本和C++。我选择了难度,选择一个希望。自考者多数同时还有工作,我是 一名警察,不仅要上班,还要加夜班,没有固定的学习时间,也不能听课,也不可能有时间去听课。自1993年7月高考失利已来,离别校园已九年有余。重新捧起数学,且为占10学分的高数工本,难度之大、时间之促,与高考不相上下。


经验:做完一切书上习题、不会做也要把答案抄一遍。


要不然,如何用得完那一尺高的草稿纸!我把大量的时间用在做题上,不值班的时候,常常演算至深夜、至次日凌晨。遇到不会做的题,就把参考答案看懂,再演算一遍。


教训之一:只做习题、未做例题


其实,我的第一经验是最重的败笔!临近考试时,我开始作历年试题,做下来才顿悟。第一是例题、第二是例题、第三还是例题!大家对本次自考最后一题有印象吧?是例题!历年大题,均有例题或其“变种”!事实上我们教材中的“总习题”有一定难度,而且每题花时不少!我们的自考,一般不会考那么难的。而我平时花时最多的是“习题、自测题、总习题”,为完成之,不得不减少了看书和例题的时间。完全的事倍功半!(猪啊!)所以建议后来者:重视例题,要自已会做。习题中,重要章节要做、少部分不做,自测题在完成一章后做,总习题不做。


教训之二:全面出击,没有重点


我从头至尾把教材做了一遍,因为内容太多,公式太多,结果做了后面的,忘记前面的。到最后,脑壳里仍是一团酱糊。其实,高数是相当严密的科学(还用你说!),从头推到尾!几个重点:极限、导数、不定积分、空解、微分方程,书后都有大量的习题,一个小题就有二十至三十个子题,这就是重点罗。


教训之三:死钻牛角尖,看得太难


举个例吧,求微分方程的解,我在“二阶常系数非齐次方程”一节上,花了些时间,先看不懂,做了许多题,看了许多例题,才搞明白是怎么回事!结果一看历年试题,人家根本就不可能出那么繁的题!这样的例子很多,还有各种物理应用,也根本就不会考!而傅立叶级数,只要会公式,三个边界上公式,就可以了,至于如何来的、如何应用,可以不去管他。于是我得出一结论:看不懂的,根本不会考。看得懂的、似是而非的,就要多看多练习。


给大学新生——高等数学学习方法

目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的大一新生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。笔者认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。我在高等工科院校从事高等数学的教学工作已有三十余年,高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

那么,大一新生怎样才能学好高等数学呢?笔者想就自己多年从事本门课程教学的经验与体会,谈几点肤浅的看法,以供同学们参考。

一、摒弃中学的学习方法

从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。他们首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教 师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。(待续)

二、抓好三个环节

什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。

高等数学学习方法简介

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。

这里,就学好这门课的学习方法提一点建议供同学们参考:

一、 把握三个环节,提高学习效率

一课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。

二认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,

记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。

三课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;

然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。

二、 在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。

三、 按"新=陈+差异"思路理解深化学习知识。

四、 "三人行,则必有我师",参加老师的辅导,向同学请教并相互讨论。

五、 处理数学问题的基本方法:

一分割求和法;

二以直求曲法;

三恒等变形法:

①等量加减法;②乘除因子法; ③积分求导法;

④三角代换法; ⑤数形结合法;⑥关系迭代法;

⑦递推公式法;⑧相互沟通法; ⑨前后夹击法;

⑩反思求证法;⑾构造函数法;⑿逐步分解法。

六、 阶段复习与全面巩固相结合。

高等数学学习方法谈 2006-6-13 20:26:47

高等数学学习方法谈

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。

这里,就学好这门课的学习方法提一点建议供同学们参考:

一、 把握三个环节,提高学习效率

一课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。

二认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,

记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。

三课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;

然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。

二、 在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。

三、 按"新=陈+差异"思路理解深化学习知识。

四、 "三人行,则必有我师",参加老师的辅导,向同学请教并相互讨论。

五、 处理数学问题的基本方法:

一分割求和法;

二以直求曲法;

三恒等变形法:

①等量加减法;②乘除因子法; ③积分求导法;

④三角代换法; ⑤数形结合法;⑥关系迭代法;

⑦递推公式法;⑧相互沟通法; ⑨前后夹击法;

⑩反思求证法;⑾构造函数法;⑿逐步分解法。

六、 阶段复习与全面巩固相结合。

学习方法五原则


学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。

1."循序渐进"──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。

2."熟读精思"──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,"熟读",要做到"三到":心到、眼到、口到。"精思",要善于提出问题和解决问题,用"自我诘难法"和"众说诘难法"去质疑问难。

3."自求自得"──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。

4."博约结合"──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。

5."知行统一"──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。"知者行之始,行者知之成",以知为指导的行才能行之有效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。


数学学习方法


●全面复习,把书读薄


从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.


全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.


●突出重点,精益求精


在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多."猜题"的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,"猜题"便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.


●基本训练 反复进行


学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错.


有不会的可以去网上看一下教学视频


更多请点击:

Ⅵ 怎么自学数学

1.回归课本、背目录了解框架

想提高数学成绩,很多同学会忽视课本,买很多课外教辅资料来给自己“加餐”,这其实是本末倒置、丢了西瓜捡芝麻。

课本是无数老师根据数学教育大纲编写出来的,可以说是高考出题的指南针,课本上提供的例题往往是精练的、能体现本节知识重点的,而且相对基础,更加适合基础一般的同学。

所以同学们在去做课外辅导题之前,不妨先把课本多读几遍、把目录背过,把课本习题多做几遍吃透,这样可以打好基础,再去做“拔高题”,效果才会事半功倍。

2.背诵经典题目

在大多数同学的印象里,有这么一个“刻板印象”:那就是数学需要理解、不需要背诵。

其实不然,考试时靠的不是“现场理解能力”,而恰恰是背诵能力,你需要把知识点和解题类型牢牢记在自己脑子里,考试时直接从大脑里调出来用,而不是考试现场“理解这道题考什么、怎么解”。

义务教育阶段,数学知识点涉及的题型是有限的,我们要做的就是把这些经典题型背下来,考试时遇到类似的题,就按着自己背过的题型往里套。这个方法听起来挺笨,但是很实用。

北京市文科状元段楠同学分享自己的学习经验时,就曾提到背例题。通过背诵经典例题他的数学从不及格到优秀。

3.建立错题集并定期复习

建立错题集,这个话题其实有些老生常谈。很多老师都会要求学生建立错题本,但往往没有后面一部,那就是定期复习自己整理的例题。

根据艾宾浩斯记忆曲线,我们是会不断忘记自己记住的东西的,只有通过不断复习,才能将知识变成永久记忆。

好记性不如烂笔头,同学们千万不能省下整理错题这一步。积少成多,错题本就是你的知识薄弱点合集,定期回顾、复习错题,能有效弥补自己的知识薄弱点,从而提高成绩。

阅读全文

与数学自学方法是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050