‘壹’ 如何提高中小学生数学能力
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。孔子说:“学而不思则罔,思而不学则殆”。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。如何培养学生的数学思维能力,本文就是谈谈学生数学思维的培养的几点尝试。1.找准数学思维能力培养的突破口。心理学家认为,培养学生的数学思维品质是培养和发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。思维的深刻性既是数学的性质决定了数学教学既要以学生为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。创造性思维品质的培养,首先应当使学生融会贯通地学习知识,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问。能够提出高质量的问题是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。新的课程标准和教材为我们培养学生的创造性思维开辟了广阔的空间。批判性思维品质的培养,可以把重点放在引导学生检查和调节自己的思维活动过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。2.教会学生思维的方法要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。3.善于调动学生内在的思维能力一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分解,减缓坡度,分散难点,创造条件让学生乐于思维。三要鼓励创新,让学生独立思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的见解,多赞扬、肯定,促进学生思维的广阔性发展。当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。
‘贰’ 如何培养和提高学生的数学能力
什么是数学能力?是指人们在数学活动中,使数学问题解决能够顺利完成的一种特殊的心理机能,这种特殊的心理机能直接影响着数学活动的效率。因此,只有对这种特殊的心理机能施以积极的影响或刺激,才能在教学中有效地促进学生数学能力的发展。在数学活动中,学生解决任何一个数学问题,首先,应具备相应的数学知识和数学思想方法。它是形成数学能力最基本的因素;其二,运用数学知识及思想方法对问题进行合理的判断、推理与论证;其三,要有锐意进取的创新意识,在数学活动中,有独到、灵活与强烈的开拓倾向性。显然,若学生具备这三种因素的心理机能,就能在运算、空间想象、分析问题与解决问题中形成数学能力。
教学中有的放矢地对学生施以这三个方面的训练、培养,才能使每个学生的数学能力发展到应有的水平。
一、数学知识的获取与数学思想方法的渗透
在数学活动中,学生最关心的就是解决问题的方法,即常说的数学方法,它是指在数学思想的指导下为解决数学问题所提供的具体思维方向与操作程序。
中学的数学方法可分为三类:
(1)从认识方法上讲,有“观察与实验、比较与分类、归纳与类比、想象、直觉、顿悟”等,这些数学方法隐含于教材之中,必须引导学生挖掘,在解决问题中反复实践,才能从感性认识上升到理性认识,最终达到灵活运用。
(2)从逻辑上讲,有“完全归纳法与不完全归纳法、综合法、分析法、演绎法、反证法、同一法”等。
(3)在教材中还有一类由几个具体的操作步骤来完成的数学方法,如初中教材上的消去法、配方法、换元法、待定系数法、等积法、基本图形法等,数学思想是数学活动的基本观点,在教学中,应使学生认识到它们的内在规律及本质,认识到数学思想是对数学知识内在规律及本质与数学方法的高度概括,对解决数学问题具有指导性意义,中学教材上的数学思想有:“符号与变元思想、集合与对应思想、公理化与结构思想、系统与统计思想、化归与辩证思想”等,教学中,如何向学生渗透数学思想呢?
(1)在知识学习中提炼数学思想
数学思想内隐于教材之中,在知识的发展点与新知识的发生点,存在着丰富的数学思想。在教学中,应该启发学生注意提炼数学思想,如对多边形内角和的探索,可以引导学生把多边形转化为三角形来处理,从中提炼化归思想。
(2)在数学方法的学习中归纳数学思想
在学生掌握知识的同时,应进一步引导学生归纳解决数学同题的数学方法,不仅要求学生灵活运用这些数学方法去解决数学问题,还要把这些数学方法与已有的数学方法联系起来,归纳概括其共性。并揭示其内在规律及本质,使学生深刻认识到这样的共性在解决数学问题时的作用。如代数中方程与方程组中的换元法,几何中的角、线段、中间比,实际上都体现了变元思想。
(3)小结时强化数学思想
小结时不仅让学生整理知识结构与数学方法,还要强化数学思想的统摄地位与解决数学问题的作用。尤其是在章末小结,要精心编选习题,使这些习题不仅体现全章的重要知识与数学方法,还要体现这一章的主要数学思想,使学生认识到这一章的数学思想在解决数学问题中起到哪些作用。如三角函数一章小结时,在学生整理完知识结构与数学方法后,要强化符号思想、对应思想与结构思想,并用相应的习题去体现它们,特别是结构思想,要让学生掌握在较复杂的题型或图形中,如何建立直角三角形这种结构去解决问题。
二、数学思想品质的培养
由于解决数学问题是由条件向结论的转化过程,带有一定的方向性。因此,在教学中,集中思维与发散思维的训练是培养学生思维品质的主要内容。
集中思维从形式上看,是“具有定向性、层次性与收敛性”。从内容上讲,是“具有求同性与专注性”。
从教材的逻辑结构分析,方向性、层次性与收敛性比较外显,但引导学生探索每一个知识点的过程,其求同性与专注性又内隐于其中,因此,教学中应引导学生学完一单元或一章内容后,认真系统地阅读教材。结合集中思维的形式与内容,写读后感或制出教材的思维图表,使学生感悟集中思维的内涵。从解决数学问题的过程分析、创设集中思维的情境,引导学生综合分析条件中的已有信息,朝着结论的方向,把问题分成几个依次递进的小问题,每解决一个小问题,让学生明白,其结论直接影响下一个小问题的思维方向,其思维搜索范围将随之缩小,并逐步向结论推进,最终使问题得到解决。显然,学生在解决问题的过程中,集中思维的品质得到了培养。
对概念、性质、定理的教学,也可给学生提供一个发散思维的情境,让学生去探索解决问题的途径。这种思维从方向上看,。具有逆向性、横向性与多向性”;从内容上讲“具有变通性与开放性”。常说的逆向思维、求异思维,不过是在解决数学问题的过程中,分析问题的切入点不同,目的都是设法从条件向结论转化。因此,教学中应根据不同的教学内容,创设不同的发散情境。使学生运用已有的数学知识及思想方法,从不同的角度,勇于提出自己的想法,使学生发散性思想品质得到充分的锤炼。
在教学中,发散性思维的培养主要有以下途径:
(1)条件发散,结论不变.启发学生运用已知数学知识及思想方法,尽可能地从不同的角度去探索问题,把结论成立的各种可能的数量关系或图形的位置关系都寻找出来。
(2)结论发散,条件完备.启发学生在探索过程中,利用想象、猜想、尝试与直觉等,把符合条件的结论都探索出来。
(3)解决数学问题的过程发散,即条件完备,结论一定。引导学生从条件与结论中,以不同的信息作为切入点,运用已知的数学知识及思想方法,把解决问题的各种途径都探索出来。
三、创新意识的培养
所谓创新意识,指在解决数学问题的过程中表现出的独到性、变通性、灵活性与开拓性,进而形成的个人能动的倾向性。这种个人能动的倾向性,不仅仅与学生的先天条件有关,还与教师精心培育与正确启发、引导、鼓励有关。因此,教学中应利用学生的好奇心,启发学生独立地发现问题,引导学生运用已有的数学知识及思想方法,灵活地探索未知,鼓励学生开拓,使学生逐渐形成个人能动的倾向性。
从教材上可以看出,数学知识的发生与发展过程是一个动态过程,因此在教学中应给学生创设一个动态的思维情境。创设由简单到复杂、由特殊到一般或由一般到特殊的各种情形。在这个动态过程中,启发学生去发现”现实生活中哪些实际问题与学习的数学内容有关,使学生在动态探索中,其独到、变通与灵活的个人能动倾向性得到培养。教学中不仅启发学生用发散性思维去探索问题,还要引导学生把条件与结论中的一些特殊的条件(或结论)一般化,一般的条件(或结论)特殊化,引导学生从数量关系与图形位置关系的动态变化中,锤炼独到、变通与灵活的个人能动倾向性。
怎样培养学生开拓数学思路的习惯?
(1)对已有数学模型性质进行开拓
一些数学模型性质是因一些特殊的数学元素而形成,教学中可以引导学生利用这些特殊的数学元素,去发现“新的性质”。如在平面几何复习时,已知三角形三边。可求出三角形的高与三边的关系.那么已知三边,某一边的中线,某一角的平分线是否可求?
(2)对学过的数学知识的应用开拓
当学生学完某一知识点之后,可引导学生利用刚学习的概念、性质等自拟习题并作答,有时可引导学生把自拟习题的范围适当拓宽。如代数问题拓展到几何问题,几何问题拓展到代数问题等。使学生展开思维的翅膀,自由地将所学到的知识进行开拓应用,对违背科学常识的现象要纠正。
(3)对教材上的例习题进行开拓。
教材上的例习题具有典型性与深刻性,引导学生充分利用例习题,揭示其深刻性,领悟其典型性。使学生的学习达到举一反三的效果。
‘叁’ 浅谈如何提升数学学习能力
小学的数学的学习是一项任重而道远的系统工程。数学应该紧密联系学生的生活经验和已有的知识出发,创设生动有趣的情境,这是数学教学活动产生和维持的基本依托,是学生自主探究数学知识的起点和原动力,是提高学生学习数学能力的一种有效的手段。学好数学对于小学生有着极为重要的意义。可以提升小学生的数学学习能力,对于其今后的课程以及其能力的提升有着极为重要的影响。
结合我的教学经验,我认为,想要学好数学,提升对于数学学科的学习能力,最重要的是激发学生的兴趣。让孩子快乐的学习,掌握数学学习的能力是学生们学好数学的关键因素,并且,这一点与我们的教学方法和教学的策略也有很大的关系。我认为,总共分为激发学生的兴趣、增加练习、培养自觉性三个方面进行。虽然在教学中还有许多其他方面的影响因素,但是,我认为,这是其他因素的基础。
一、要激发学生对于知识的兴趣
激发学生的学习兴趣不是学生单方面的结果。“知之者不如好之者,好之者不如乐之者。”兴趣是最好的老师,是学生主动学习与探索的动力,是成功的秘诀。学生只有对学习产生强烈的求知欲才会更好地去配合老师,也会更好地去学习,以及参与到实际的教学中。如果,对于学习的内容毫无兴趣可言,那么,老师所讲的内容以及所教授的内容也无法起到应起到的作用。并且,如今讲求的是高效的课堂讲学,是学生主动参与,积极探索、师生良性互动的课堂。因此,我们作为教师,应该讲求实际的功效,提升学生学习的兴趣。让学生的兴趣促进学生,激励学生学习。并且,我认为,应该进行的是一种奖励式的教学方式,通过奖励式的教学方式,可以给学生的学习增添一份乐趣在其中,老师的奖励作为对于学生的一种诱惑,间接地起到了使学生更加乐于学习,更加喜欢学习,从而形成极大的兴趣。
二、应该让学生增加练习
练习分为两个方面一个是对于知识以及课程标准要求的内容。
例如,学习乘除法时,应该加强对学生的练习,通过练习可以提升学生的学习能力,以及对于相关知识的掌握。 信心来自于实力。通过大量的练习,增加学生对于知识点的掌握程度,可以提升学生的实力,进而提升学生的信心,并进一步地提升学生的学习能力。古龙在他的小说中,曾说过,一个刀客为了练习一个刀法,每天练了上万次,我想,这是一样的道理。大量的练习虽然是一件比较乏味无聊的事情,但是通过大量的练习,可以使学生掌握到自己的方法,更主要的是可以使学生加强相关知识点的掌握,提升其在理论基础功底上的能力。当对于一个知识的掌握达到一定程度后,就会使他们的能力得到极大的飞跃,并且可以减少甚至是杜绝因为一个知识点没有良好的掌握而影响其后续知识的学习,从而进入了一个恶性的循环之中。
另一个是对于知识点与生活实际的结合,从而使学生更加地了解到这些知识,并且提升这些知识点的实际作用,也可以使学生在理解知识的同时,将知识应用于社会的实际生活中,真正地做到学以致用,而不是仅仅作为一种应试考试的内容,这也是提升学生数学学习能力的一种体现。例如,当我们讲到关于年龄的计算时,可以设定和生活相关的事例。“有一位老爷爷73岁了,可是他只过了18个生日,那么这是怎么回事?”以此种方式,使学生更好地开始学习好相关的内容知识点。也有兴趣去学习,并且,也可以启发学生在遇到问题时,将问题带到生活的实际中去解决。
三、自觉性
学习的自觉性。靠老师或是家长的监督成长下来的孩子,很难学会如何独自地学会一门学科课程。而小学是很多的习惯养成的时期,因此,应该养成学生自觉学习的习惯,这不仅是对于小学的相关课程的学习负责,也是对于学生将来良好的学习习惯的负责以及基础的奠定。好习惯,好人生。通过一系列的习惯等,提升学生的学习实力。数学这个科目本身就是一个比较晦涩枯燥的科目,因而,自觉的重要性更为突出。
以上,是我根据自己的教学经验整理的相关的内容。也许其中还有很多不正确的地方以及观点,还望各位前辈、同仁、专家指教。
我们每一个人都希望自己的孩子、自己的学生可以学有所成,每一位教育工作者都希望自己可以桃李满天下,我认为,教育,不仅仅是将知识传授给学生,而且还要培养学生的学习能力。正所谓,十年树木,百年树人,教育是百年大计,因此,我们应该认真地培养好每一代的学生,将他们的能力培养出来。作为数学老师,这仅仅是我们教授给学生科目中的一项,并且,通过学习能力的培养,也可以影响到其他学科的相关习惯的养成,甚至是在更远的工作中,让小学的基础教育以及培养出的好习惯,成为其职场、工作中的最牢固的基石。
‘肆’ 如何提高学生解决数学问题的能力
一.培养学生数学抽象能力
学生之所以感觉数学难学,归根结底就是学生缺乏数学抽象能力。传统教学中老师直接告诉学生抽象出的结论是什么,而没有让学生参与抽象的过程,导致死记硬背。因此教师要发挥主导地位,引导学生通过现象观察出本质,理解“抽象” ,学会归纳总结。让学生自己形成数学命题,数学思想,老师加以指正和完善,长期以来,学生会有独立自主学习知识的能力。
二.培养学生逻辑推理能力
思考人类历史上的每一次创新与发现,都离不开归纳,类比。在课堂教学中,大量使用类比,介绍人类的重大发明与数学中逻辑推理的关系,充分情景教学,培养学生学习数学的兴趣,这就要求学生大胆的发现和提出命题,他们的有些想法在不久的将来就是新的发明创造,就是定理公理;同时数学推理的精华在于演绎推理,着名的三段论构成了数学的知识体系,公理,定理,推论的证明方式大部分是三段论,演绎推理是现代文明的奠基石,在告知学生三段论的推理方式下,放手让学生去推理,掌握推理的基本形式和规则,正确书写推理的步骤,因果明确,书写具有逻辑顺序, 探索和表述论证的过程; 构建命题体系,同时学以致用,用逻辑推理解决数学和生活中的问题。
三.培养学生数学建模能力
要求学生必须做到发现和提出问题, 利用已知知识建立模型; 求解模型; 检验结果和完善模型。 通过数学建模可以培养学生动手操作能力,对知识的理解程度,达到学以致用,理论与实际相结合。体现数学来源于生活并将应用于生活,数学建模是新课标必须的要求,是理论与实际结合的重要体现,使得学生达到学以致用,在平常教学中,要求学生平时注意搜集模型和资料,注重归类,长期为数学建模准备素材,有备无患。
四.培养学生直观想象能力
学生直观想象能力的培养要通过动手来完成。如我们在立体几何,平面几何教学中,鼓励学生先自己做出模型,这样我们再展现几何图形时,学生便不再陌生,也能找到点,线,面之间的位置关系,成功避开了生硬讲解,达到事半功倍的效果。同时要求学生在生活中注重观察,百闻不如一见,在脑海中形成一些数学直观模型,感受数学之对称美,曲线美。培养学生的想象能力,能有机的结合数与形。因此在教学过程中引导学生用想象的观点看待问题,富余想象,大胆想象,让学生在课堂上放的开,不在以传统的模式约束学生,培养新时代富有想象力的人才。
五.培养学生数学运算能力
数学中的代数部分,总的来讲就是在集合上定义加减乘除及相关运算,形成代数体系和相关结论,这就要求学生理解运算,掌握运算法则,探索运算思路,设计运算程序进行运算。运算是演绎推理的重要组成部分,是人类文明传承的工具,是严谨求实的科学精神的培养手段。让学生充分感知运算的创造性,当今很多程序的实现都是大数据的处理都是在进行运算,取值,自己具有较高的运算能力,才能识别这些程序。这是时代的呼唤,顺应历史发展要求。
六.培养学生数据分析能力
当今世界云计算,大数据处理等等日新月异的成果都与数据是离不开的。如今的竞争也就变成时间的竞争,容量的竞争,优胜劣汰,这就要求学生具有数据获取,数据分析,知识构建的能力。目前我们所在的时代为多元化信息时代,这就要求人类必须有处理信息和数据的能力,才能使得计算机技术更好地服务于人类。平时让学生注重数据的搜集,整理,归类,可以培养学生在这方面的能力,从点滴做起,终将铸成大的成就。