❶ 数学建模如何建立模型
问题一:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面:
摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。
正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。
要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。
问题二:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>>
问题三:怎么建立一个好的数学模型? 一个好的数学模型,首先应该是可以把所提问题解决的,只有能解决问题的模型才是好的模型。其次,就在于模型的创造性,创造性并不是说你非得自己找出个新的方法或者算法来,而是即使你用的是久的算法,但是你用在一个新的领域,并且很好的解决了问题,具有很好的适应性,那样就是一个好的数学模型。注意,数学模型可能是公式,也可能是某种算法,当然也可能是图表类的东西。
问题四:数学建模的一般步骤是什么?? 模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用与推广
应用方式因问题的性质和建模的目的而异。而模型的推广就是在现有模型的基础上对模型有有一个更加全面,考虑更符合现实情况都适用的模型。
问题五:支北是什么? 5分 福州话里是脏话也..
形容女人的....
问题六:常见的建立数学模型的方法有哪几种 ―般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义
❷ 数学建模中的评估模型有哪些
评价类数学模型有:一、层次分析法(1、构造两两比较判断矩阵 2、单一准则下元素相对权重计算及一致性检验 3、一致性检验 4、计算各层元素对目标层的总排序权重)
二、灰色关联分析体系
三、DEA评价体系(1、比率模式 2、超级效率模式 3、线性规划模式 4、超级效率之多阶排序模型)
四、模糊数学评价模型
❸ 什么是数学建模如何建模
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
❹ 数学建模模型有哪些适合解决什么问题
数学模型有很多类,解决的问题从基本的原料供应关系到复杂的火箭升空、发动均可以建立模型,但是一般在大学学习的都是基本的一些定式模型,具体的你可以看书,大学数模班主要的是培训大家的基本编程能力、英语翻译阅读理解翻译和团队协作以及基本数学知识。
❺ 常见30种数学建模模型是什么
1、蒙特卡罗算法。
2、数据拟合、参数估计、插值等数据处理算法。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
4、图论算法。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
6、最优化理论的三大非经典算法。
7、网格算法和穷举法。
8、一些连续离散化方法。
9、数值分析算法。
10、图象处理算法。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
(5)数学建模你怎么知道用什么模型扩展阅读:
数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
❻ 数学建模分类模型有哪些
数学建模常用模型有哪些?
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
❼ 常用的数学模型有哪些另外运用数学建模解题的关键点有哪些
首先,常用的数学模型有优化模型(主要是统计回归,包括对数据的处理,用到拟合,差值等等),微分方程模型(常微较多,偏微不常用),差分方程型(就是离散型,这类不能求导微分等等),概率论模型,还有什么图论啊 一些乱七八糟的 (以上我说的都是一些很基础的模型,复杂的模型差不多都是基于简单模型)
数学建模主要有三步,1.把实际问题转化成数学问题(这一般是竞赛前两天的工作);2.用数学知识和计算机知识(主要是MATLAB)解决数学问题;3.整理和完善,论文写作
我认为数学建模最重要的一步就是把实际问题转化成数学问题这一步,因为后面两步往往是不难的。
关键点有 1头脑要灵活一点,要大胆的想,考虑的因素要全面一点,但是呢,不能想出一个模型就马上建模,因为要考虑很多问题,比如是否可行(主要是实际的问题,比如合作模型中,合作中每个人得到的利益要大于等于没有合作时原来每个人的利益),比如建立的数学模型是否容易解决(比如你建立了一个常微分方程组,这个问题一般情况下好像数学家都还没给出解决,所以可想而知你和计算机能不能解决了,这个时候你应该考虑把问题巧妙地转换一下或者简化一下)
关键点之2,要找到实际问题之中和核心问题,然后由这个或者这几个核心(最好不要太多核心)来拓展。比如火箭三级助推这个问题,它的核心问题是对火箭质量改变规律的探究。然后呢,做完了核心问题的研究以后,想想实际的问题。比如,还是火箭助推这个问题,发现了助推器越多越好这个规律后,是不是就要用无穷级助推呢?显然不是,这就是后续的最优化问题。
你可以找个班去听听,或者借本书看看。(主要推荐姜启源的《数学建模》),然后自己试着建模,慢慢来。然后学一些知识,数学当然不能少(主要你要学运筹学,最优化等等,如果你想在建模中脱颖而出的话),还有要早点组队磨合,做好分工与合作。
论文一般没什么,主要就把你的思路清晰简洁的表达出来,结合图形,表格等等,然后语言要严谨,用词准确,能生动就更好了。(当然美国的数模竞赛还要你英语水平比较高才行)你可以去研读一些优秀论文,对你帮助很大的。
希望我能帮到你~