导航:首页 > 数字科学 > 数学的概数是什么

数学的概数是什么

发布时间:2023-06-07 21:46:43

❶ 数学的具体概念是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。
词源 数学(mathematics;希腊语:μαθηματικ�0�4)这一词在西方源自于古希腊语的μ�0�4θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικ�0�2�0�9(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ�0�4(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。
(拉丁文:Mathemetica)原意是数和数数的技术。
我国古代把数学叫算术,又称算学,最后才改为数学。

❷ 谈谈你的理解,数学是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科.通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理.
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性.可量度属性的存在与参数无关,但其结果却取决于参数的选择.例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关.
数学是研究现实世界中数量关系和空间形式的科学.简单地说,是研究数和形的科学.由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数.
基础数学的知识与运用总是个人与团体生活中不可或缺的一块.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日.
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等.数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展.数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现.
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……).

❸ 数学的定义是什么

定义
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语 : mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数 τα μαθηματικά(ta mathēmatiká)。以前中国古代把数学叫算术,又称算学,最后才改为数学。
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
关于数学的定义,《中国大网络全书。数学卷》吴文俊先生是这样写的:“数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。这个定义来自恩格斯的《自然辩证法》:”数学是数量的科学,它从数量这个概念开始,它给这个概念下了一个残缺不全的定义,然后再把未包含在定义中的数量的其他基本规定性当作公理从外部引了进来,在这以后,这些规定性就显现为没有证明过的东西,自然也就显现为数学上不能证明的东西。数量的分析会指出这一切公理式的规定是数量的必然的规定。恩格斯再另一篇文章中说:“我们的几何学是从空间关系出发,我们的算术和代数学是从数量出发。

我们读大学时用的是苏联的教材,关于数学的定义就是吴文俊先生所写的定义。

对于这个定义,有各种不同的理解。钱学森先生认为数学是社会科学和自然科学的基础。哲学是社会科学和自然科学的概括。有人对数学来源于现实世界有不同的看法,比如“哥德巴赫猜想”来源于现实世界的哪一部分,很难讲清楚。齐民友先生认为“数学的生长像竹子,根在大地,然后自己一节一节向上长,间或爆出新笋,长成新竹。若干年后,竹子开花,结成种子,重回大地。”

西方的数学家有不同的看法,例如林恩。斯蒂恩认为:“传统上把数学描述为数与形的科学,但是随着数学家开发的领域扩展到群论、统计学、最优化和控制理论之中,数学的历史的边界已经完全消失,同样数学的应用的边界也没有了:它不再只是物理学和工程的语言,现在数学已经成为银行、制造业、社会科学以及医药必可不少的工具,如果从这个广泛的背景来观察,我们看到数学不只是讨论数与形,而且还讨论各种类型的模式和次序。

我认为西方的数学家的看法是对的,恩格斯是总结19世纪数学给出的定义,用这个观点看19世纪以前的数是可以的,但是数学发展了,现在的数学成果90%是20世纪做出的。
恩格斯说:数学的应用:在刚体力学中是绝对的,在气体力学中是近似的。在液体力学就比较困难了;在物理学中是试验性的和相对的;在化学中是最简单的一次方程式;在生物学中等于零。“现在的情况完全不同,过几天我会将些数学在物理学、生物学及社会科学中的应用。

西方对数学还把它看成是文化的一部分,对于这一点,很多人不认识,北京大学数学系早在1989年由邓东皋、孙小礼、张祖贵主编《数学与文化》一书。编者精选了一批国内外着名的数学家以及研究数学的家哲学的文章,从各个侧面来说明来说明数学在整个文化中的地位。1994年高考大纲也“要求考生具有一定的数学视野,认识数学的科学价值与人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。”

美国应用数学家、数学史家克莱因谈到研究数学的动力有的是为了解决社会需要。但他认为进行数学创造的最主要趋势力是对美的追求。他认为“如果美的组成和艺术作品的特征包括洞察力和想象力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。”就是说,数学是科学也是艺术。

❹ 数学又叫什么

数学叫作算术,又称算学,最后才改为数学。

中国古代的算术是六艺之一(六艺中称为“数”)。数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。

从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

中国数学简史:

数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

符号:

我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。

现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含着大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。

以上内容参考网络—数学

❺ 数学概念有哪些

概念 (mathematical concepts):是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。

在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则
什么是数学数学思想方法有哪些数学思维方法数学数学思维数学是什么数学定理大全数学方法有哪些数学的意义数学思想
概述
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵--对象的"质"的特征,及其外延--对象的"量"的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果--和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。

许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。

总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。

数学概念
一、基本概念

1.描述统计。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

2.概率的统计定义。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现"出现正面"或"出现反面"的次数大约各占总抛掷次数的: 左右。这里的"大量重复"是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;

某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?

因为前30年出现晴天的频率为0.83,所以概率大约是0.83

❻ 什么是数学!

数学是科学和我们日常生活的核心

数学是处理形状、数量和排列逻辑的科学。数学就在我们身边,在我们所做的一切中。它是我们日常生活中一切事物的基石,包括移动设备、计算机、软件、建筑(古代和现代)、艺术、货币、工程甚至体育。

自从有历史记录以来,数学的发现一直处于每个文明社会的前沿,甚至最原始和最早的文化都在使用数学。数学家雷蒙德-L-怀尔德(Raymond L. Wilder)在他的《数学概念的演变》(Dover Publications,2013年)一书中概述了对数学的需求,因为世界各地的社会要求越来越复杂,需要更先进的数学解决方案。

一个社会越复杂,数学需求就越复杂。原始部落需要的不过是计数的能力,但也用数学来计算太阳的位置和狩猎的物理学。"所有的记录,包括人类学和历史记录都表明,计数以及最终作为计数工具的数字系统构成了所有文化中数学元素的开端,"怀尔德在1968年写道。

这些抽象的问题和技术性问题是纯数学试图解决的,这些尝试为人类带来了重大发现,包括阿兰-图灵在1937年提出的通用图灵机理论。这台机器开始是一个抽象的想法,后来为现代计算机的发展奠定了基础。纯粹数学是抽象的,基于理论的,因此不受物理世界的限制。

根据格瑞利(Goriely)的说法,"应用数学对于纯数学来说,就像流行音乐对于古典音乐一样"。纯粹和应用并不相互排斥,但它们根植于数学和问题解决的不同领域。尽管纯数学和应用数学所涉及的复杂数学超出了大多数人的理解范围,但从这些过程中开发出来的解决方案影响并改善了许多人的生活。

❼ 数学的定义是什么

数学的定义是什么?
数学(mathematics或maths),是研究数量、结构、变化、空间以及资讯等概念的一门学科,从某种角度看属于形式科学的一种。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特互、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

-------选自

数学中 <=> 是什么意思?
数学中 <=> 是代钉"推理中左边可以推出右边,右边也可推出左边"的意思,它读作“等价于”。

例如:a、b、c、d都不为0.a∶b=c∶d<=>ad=bc


数学中的【项】是什么意思?
便于称呼、记忆、说明、使用,给式子的一部分取的名字,数学届通用。

-a是一项,

1+x+xy+xyz就是四项

分别是

1,x,xy,xyz

3x-8y+2z-6就是四项

分别是

3x, -8Y, 2z, -6

❽ 什么是数学数学在现实生活中的作用有什么

引言:说起数学这个名词,很多人都会想到数学这门学科。确实从小学到大学甚至学到更高的层次都离不开数学,那么到底什么是数学呢?数学在现实生活中究竟有哪些作用呢?

三、生活中的数学

说起生活中的数学普遍一些的,就是加减乘除这些基本的计算了,因为这些数字都是跟钱有关的。但是实际上数学中最广泛的应用还是在各种学科的基础理论支撑,比如说财经中就需要运用到数学来进行计算以及报表的分析。而物理学科也是需要数学的。尤其是计算机,其实计算机的基础就是通过各种数字的排列来表达信息的。同时数学在各种机密计算以及航天事业中的作用也是不容小觑的。

❾ 数学的定义是什么

数学的定义
定义1:
还是一百多年前,恩格斯给数学下的定义是“研究客观世界的数量关系和空间形式的科学”,空间形式就是指的几何学
源自: 高师几何教学改革的设想 《楚雄师专学报》 2001年 陈萍
来源文章摘要:本文在反思师专几何教学现状的基础上 ,提出改革几何教学的一些建议
定义2:
数学定义是对数学发展的概括和总结.必然具有其阶段性与局限性,不存在适合任何时期亘古不变的数学定义.3.现代数学时期(19世纪末以来)现代数学时期是以1873年康托尔(G·Cantor)建立集合论为起点
源自: 从“数学是什么”谈数学及数学教育 《零陵学院学报》 2004年 肖家洪
来源文章摘要: 数学是什么?这是一个公认的难于回答的问题.1941年,美国数学家R·柯朗与H·罗宾斯合作写了一本书,题目就是《数学是什么》.该书缘何不以“什么是数学”为题,我想二者是否有所区别,“数学是什么”,
定义3:
恩格斯在《反杜林论》中,将数学定义为:“纯数学的研究对象是客观世界的空间形式与数量关系”.这在客观上完整地概括了这一时期数学的对象和本质,因而被誉为“经典定义”
源自: 从“数学是什么”谈数学及数学教育 《零陵学院学报》 2004年 肖家洪
来源文章摘要: 数学是什么?这是一个公认的难于回答的问题.1941年,美国数学家R·柯朗与H·罗宾斯合作写了一本书,题目就是《数学是什么》.该书缘何不以“什么是数学”为题,我想二者是否有所区别,“数学是什么”,
定义4:
他说,数学的定义是‘’研究数量关系和空间形式的学科”.首先,它的表达形式简洁、严谨,毫无纸漏和瑕疵.其次,数学的分支丰富多样,为不同兴趣的科学家提供了无限宽广的可能性,具有广裹之美
源自: 沉浸在奥妙王国的中国数学家 《了望》 2002年 浦树柔
来源文章摘要:有些木讷,有些内向,总皱着眉头思考玄奥晦涩的数学问题,走路没准还会撞在电线杆上,这也许是许多人心中给“数学家”描绘的一幅“漫画像”.数学真的离我们那么远吗?数学家都那么古怪可笑吗?8月下旬在北京召开的国际数学家大会,将迎来4000多位来自世界各地的数学家,届时人们可以一睹其群体风采.
定义5:
过去说的数学的定义是恩格斯在《自然辩证法》中提出来的他说数学是研究客观世界的数量关系和空间形式的.恩格斯这个定义是19世纪提出来的随着20世纪数学的发展很多东西用这个定义概括不了
源自: 数学的力量 《安徽科技》 2002年 丁石孙
定义6:
在邵雍看来先天之学是以“数”为其根本的所以他的学说又直称为“数学”.与邵雍同时的道学家程领曾经风趣地说:“尧夫(邵雍)欲传数学与某兄弟某兄弟那得功夫要学须是二十年功夫
源自: 道教灯仪与易学关系考论 《周易研究》 2000年 詹石窗
来源文章摘要:灯仪是道教仪式之中的重要品类.它的形成具有深远的民俗学渊源和思想基础.就理论角度来说,道教之灯似乃以传统易学为结构框架.本文选择了道教灯仪中的几种要代表性的形式进行考察.作者通过文本的解读与历史追索,认为此类灯仪不仅贯穿着易学的象数法门,而且蕴含着深刻的易学义理观念.

阅读全文

与数学的概数是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050