导航:首页 > 数字科学 > 数学文化鉴赏论文怎么写

数学文化鉴赏论文怎么写

发布时间:2023-06-09 12:35:13

❶ 求一篇关于数学文化的论文,谢谢,很急

数学与文化
系别:中文系 专业:08新闻 学号:200830161010 姓名:李西淳
数学与经济学的关系
内容摘要:经济学需要很好的逻辑能力,数学培养了这种能力,经济学还要有计算等方面的能力,这也是数学需要并培养的。高等数学主要是侧重于掌握数学知识,及培养应用数学的能力,而数学分析却对培养学生的逻辑分析能力和创造性思维能力大有作用,数学可以是研究经济学的一种方法但不是唯一的方法。
关键词:数学 经济学 关系 意义 局限性
一、 数学与经济学关系概述
数学与经济的关系在今天可以说是息息相关,任何一项经济学的研究、决策,几乎都不能离开数学的应用。比如,在宏观经济中的综合指标控制、价格控制,都有数学问题,在微观经济中数理统计的“实验设计”、“质量控制(QC)”、“多元分析”等,对提高产品的质量往往能起到重要的作用。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行决策和预测。
当今在经济学中使用数学方法的趋势越来越明显,领域越来越广泛。自从1969年诺贝尔经济学奖创设以来,利用数学工具分析经济问题的理论成果获奖不断。事实上,从1969年到1998年的30年中,有l9位诺贝尔经济学奖的获得者以数学作为主要研究方法,占总人数的63.3%;而几乎所有的获奖者都运用数学方法来研究经济理论。在中国,最近几年对在经济学中使用数学方法的问题讨论比较热烈,数学的介入究竟是祸还是福,对此,可谓仁者见仁,智者见智。有的人认为,数学使经济学由乌托邦上升为科学;而另一些人则认为,数学就像魔鬼一样,会使经济学误入歧途。这说明我国经济学界在经历大力引进西方经济学的热潮后开始了独立自主的思考和探索。
二、数学对现代经济学研究和发展的影响
随着经济学发展以及研究的深化,经济学家们逐渐认识到,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分、析,不能保证对所研究问题前提的规范性及推理逻辑的一致性和严密性,也不能保证其研究结论的准确性、易证实性和理论体系的严密。这样以数学和数理统计作为基本的分析工具就成为现代经济学研究中最重要的分析工具之一。每个学习现代经济学和从事现代经济学研究的人必须掌握必要的数学和数理统计知识。现代经济学中几乎每个领域或多或少都要用到数学、数理统计及计量经济学方面的知识,而且不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论,更谈不上自己做研究,给出结论时所需要的边界条件或约束条件。理解概念是学习一门学科,分析某一问题的前提。如果想要学好现代经济学,从事现代经济学的研究,就需要掌握必要的数学。
二、 数学在经济学应用中的意义
如果经济学没有采用数学,经济学就不可能成为现代经济学。许多经济学概念是需要用数学来定义,经济行为和经济现象也主要是通过运用数学语言来分析和研究的。用数学语言来表达关于经济环境和个人行为方式的假设,用数学表达式来表示每个经济变量和经济规则间的逻辑关系,通过建立数学模型来研究经济问题,并且按照数学的语言逻辑地推导结论。因此,不了解相关的数学知识,就很难准确理解概念的内涵,也就无法对相关的问题进行讨论。数学在理论分析中的作用是:(1)使得所用语言更加精确和精炼,假设前提条件的陈述更加清楚,这样可以减少许多由于定义不清所造成的争议;(2)分析的逻辑更加严谨,并且清楚地阐明了一个经济结论成立的边界和适应范围,给出了一个理论结论成立的确切条件;(3)利用数学有利于得到不是那么直观就得到的结果;(4)它可改进或推广已有的经济理论。
四、数学在经济学中应用的局限性
首先,经济学不是数学,数学在经济学中只是作为一种工具被用来考虑或研究经济行为和经济现象。数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用而不能将之替代经济学。其次,经济理论的发展要从自身独有的研究视角出发去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件它不是无条件地适用于任何场所,而是有条件适用于特定的领域。再次,数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化从而不利于经济的发展。
数学在现代经济学中的作用数学现在已经成为现代经济学研究中最重要的工具。现代经济学中几乎每个领域或多或少都用到数学、统计及计量经济学方面的知识,因此数学与经济学的关系是相当密切的。

参考文献:田国强 <<现代经济学的基本分析框架与研究方法>>
张真.投入产出经济学中运用数学方法的机理分析[J].
林毅夫.关于经济学方法论的对话[J].东岳论丛
赵凌云.经济学数学化的是与非[J].经济学家

❷ 数学文化论文投稿

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和。下文是我为大家整理的关于数学文化论文投稿的范文,欢迎大家阅读参考!

数学文化论文投稿篇1
浅谈我国基础数学文化教育的历程

一、何谓数学文化

对于数学文化的界定很多,“数学文化是指,不仅数学自身属于人类社会的一种文化现象,而且数学还拥有广泛的超越数学自身意义的因素以及这些因素对人类的巨大影响,从而应把数学的发生、发展以及数学教育放到整个社会文化背景中去观察和认识。”

“由于数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,因此,数学就是一种文化。” 特别是一部数学史可以反映出数学文化的发生发展过程,具体的数学概念、数学方法、数学思想中都有丰富的文化底蕴,都是值得我们在教学中一一展示给大家的素材。

二、数学文化教育提出的背景

1.激发学生学习兴趣,提高数学教育质量。

不管是在哪个国家,数学教育都是基础教育的重点,然而数学一直以来被大部分学生视为比较枯燥单调难学,对数学学习缺乏兴趣甚至畏惧且望而却步。但是数学教育对每位合格的社会公民的培养又有着不可替代的重要作用,兴趣是最好的老师,怎样提高学生的学习数学的兴趣,是所有教育者都很注重的,该怎样激发学生学习数学的兴趣,其中挖掘发挥数学本身的文化内涵并实现在数学教学中成了数学教育中的热点问题,因此,提高数学教育质量是提倡数学教育中重视文化教育的原因之一。

2.素质教育的需要。

中国是数学大国,但是很长一段时间,我们过于重视数学教育的工具价值,而忽略了其作为一种文化陶冶情操的文化审美教育价值。应试教育轰轰烈烈,学生的学业负担过重,中国学生在世界上是最勤奋的学生群体,但是中国学生的创新能力不高,基础教育没有体现它最基本的功能:为社会培养高素质的合格公民。我们不需要只会读死书的书呆子,所以,为了提高国民素质,提高数学素质和数学教育质量,数学教育中的文化教育开始被大家提倡。

3.数学本身是一种文化,本来就具有文化教育的价值和功能。

20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩[3]。近年来,数学文化成了当今探讨数学发展的新视角,人们愈来愈认识到,数学的发展与人类文化息息相关,数学一直是人类文明主要的文化力量,同时人类文化发展又极大地影响了数学的进步。数学本身不仅仅是一门科学,也是一种文化,具有文化教育的价值和功能。“优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。”

三、我国基础教育中数学文化教育所经历的三个阶段

第一个阶段:基础数学文化教育的被忽视阶段(1949年至20世纪90年代)

我国刚刚成立之时,百废待兴,基础教育还在起步发展,一时连合格的数学老师都难以保证,更何况数学教育中的文化教育的重视了。从解放初期的全盘照搬苏联数学教育,直到1958年的很长一段时间的数学教育目的的对比我们发现,数学教育重视了运用已经学到的知识和技巧去解答算术应用题和日常生活中的简单计算问题,而对知识、能力和思想品德三方面的教学目的提得不够全面、明确。

之后受赶美超英的大跃进运动和十年“”的影响,我国的教育事业受到严重冲击,直到1978年年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常的轨道上来。然而,此次修订的大纲,增加了很多高等数学内容,显然与当时基础数学水平较低的现实不符,加重了学生们的学习负担。针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验。1986年颁布了《全日制中学数学教学大纲》,对教育的目标提出了适应当时具体情况和未来发展的新要求[4]。很显然,相对于今天,对于基础教育中的数学文化教育,大家还一时无暇顾及和提及。

第二个阶段:基础数学文化教育被热烈探讨阶段(20世纪90年代至2004年)

随着国力的增强,对教育的足够重视和投入,中国的数学教育,特别是基础教育,也在世界上处于领先地位。然而,应试教育也愈演愈烈,很多学者和教师发现,由于受应试教育的影响,数学课程注重知识传授,忽略了情感态度与价值观的教育,特别是数学这样的理科科目,在学生眼里就是难题,更何况全民奥数热。很大程度上奥数毁坏了中国学生对数学学习的兴趣和热情,增加了他们对数学学习的恐惧,占用了学生们发展其他素质的宝贵时间,浪费了太多人力物力。

1993年2月13日,中共中央、国务院在总结广大教育工作者改革实践经验的基础上制定发布的《中国教育改革和发展纲要》(以下简称《纲要》)中指出:“中小学要从‘应试教育’转向全面提高国民素质的轨道”,为了贯彻和落实《纲要》,中共中央于1994年召开的全国教育工作会议上提出:“基础教育必须从‘应试教育’转到素质教育的轨道上来,全面贯彻教育方针,全面提高教育质量。”

伴随着素质教育观念的广泛深入,大家对怎样提高素质教育的研究越来越广泛。具备学习的愿望、兴趣和方法,比记住一些知识更为重要,这也是素质教育所倡导的。怎样提高数学教育质量,使数学教育也完全符合素质教育的宗旨,成了大家探讨的热点,首先怎样激发学生学习数学的兴趣,还原数学本身的教育价值成了大家深思的问题。在这样的背景下,一直被忽视的数学文化教育被大家发现是贯彻数学素质教育的一个重要手段,很显然我们的数学教育中忽略了数学的文化价值,数学独特的美,数学教育中的文化教育,数学教育独特的素质教育功能,在大力提倡素质教育的同时,数学教育不再是简单的计算证明推理,也要重视数学教育中的文化教育,从而提高素质教育。

对数学教育中怎样开展文化教育的研究成为热点,其中华东师范大学张奠宙教授经过对这一阶段的研究,发表了以下看法,他认为当时的研究“都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分地揭示了数学的文化内涵,肯定数学作为文化存在的价值。这是必要的”。同时,张教授还指出两点不足,其中之一便是,“数学文化的研究,不能只说数学的重要性,强调数学对人类文明的贡献。与此同时,还应观察数学受到社会文化的影响,借助社会文明阐述数学的文化含义。这有助于人们贴近数学。”

在中学老师层面,这种思想也得到了很多人的认同,在他们 发表的教学研究的 论文中,如何恰当地将 文化 教育融入数学教育之中,以此来提高学生的学习兴趣的文章有

很多。但不是所有的领导和教师在实际的教学中都足够重视数学文化的价值和重要性或者以此贯穿于自己的课堂教学之中,也没有官方 的课程标准或者教材给予数学文化相应的地位。

第三个阶段:基础数学文化教育高度被重视并出现在教材中和实际的教学中(2004年至今)

“数学是一种文化,数学教育是数学文化的教育。” 2004年开始的新课改中提出“关注数学文化的价值”,“数学文化教育在教学中要有意识的穿插,且数学史以 专题形式出现在选修教材中。”这些观念在2003年颁发的《普通高中数学课程标准(实验)》中有所体现。新的课改指出,数学教育不仅是知识的教育,也是素质的教育。新课程将数学文化作为高中数学课程内容的一个方面,并且给出了一定数量的选题,提出了具体目的和要求,教学中要恰当把握好有关选题的内容和要求。例如,如何结合 统计思想方法的学习去把握“广告中的数据与可靠性”;如何在恰当的地方设计恰当的“黄金分割引出的数学问题”,使学生通过实际问题,认识数学在 建筑、 艺术、美学、优选等方方面面的广泛 应用, 体会数学文化的价值。

新的课改后,以往无意识的数学文化的教学转化为有意识的数学文化的教学,关于数学文化的教学不单再是有关资料的介绍,而是应将资料中蕴涵的文化价值体现出来。数学教育中的文化教育以下面两种形式出现在实际的教学中。

1.数学文化内容的介绍穿插于数学知识的教学中。

“教师在课堂上可以介绍一些重要的基本概念的发生、 发展,使学生认识数学发生、发展的规律,同时也了解人类从数学的角度认识客观世界的过程。例如,关于解析几何与微积分的创立、发展的资料比比皆是,选取和整理成数学素材时应关注那些体现 社会发展和数学发展相互促进的内容,或反映数学家为追求真理表现出来的那种锲而不舍的精神,求真务实、说理、批判、质疑等方面的内容。通过恰当的提示、引导,让学生从对相关资料了解的基础上,上升到对其中蕴涵的数学文化价值的认识”。

“几句话,一个故事,一个片段等,总之,我们在知识教育的同时,以知识为载体使学生体会和认识数学的文化价值,促进学生科学观的形成,全面提高学生的数学素养。”

2.数学史作为数学文化的载体出现在新教材中。

新课程中选修系列之中包括数学史选讲,数学史选讲作为选修课程已经进入高中数学新课程。选讲教材告别了过去那种单一的数学学习内容和方式,跳出数学知识和技能训练的题海,从宏观上审视数学的历史演变,感悟数学发展史的风雨历程,了解各种数学思想方法如何产生、发展和应用。

数学史是数学文化融入数学课程的最好载体,数学史展示了数学产生和发展的过程,它是劳动人民勤劳智慧的集中体现,是数学知识、数学思想和数学方法的宝库。“通过数学发展进程中的主要人物、事件及其背景的介绍,可以使学生掌握数学的脉络,懂得数学发展的客观规律,以及数学于人类社会发展之间的相互作用;通过了解古今中外数学家的生平简介以及基本数学思想方法,从中吸取丰富的营养和 经验教训,有助于学生形成正确的数学思想观念,树立独立思考、勇于探索的进取精神;通过不同文化背景的数学的比较,引入多元文化的数学,可以使学生从更广阔的视野去认识人类文明的数学成就,欣赏丰富多彩的数学 文化。”总之,数学史有助于我们全面认识数学 教育的文化价值,探索数学文化为主导的数学教育,数学史的教育价值在课程改革的实验区已经显现出来。

四、结束语

数学是人类文化的重要组成部分,是人类 社会进步的产物,也是推动社会 发展的动力。作为一种文化,数学文也是公民必备的科学家养。在美国数学教育中,教材也强调数学史知识的介绍,在介绍中注意数学家的闪光点,可教育性的材料,有引起学生学习数学兴趣的材料,也有关于世界各国的重要数学史实, 力图使学生对数学的历史发展有比较完善的认识,以扩大学生的眼界[8]。

在中国这样一个曾经的世界四大文明古国,一度在数学教育中缺失的数学文化教育被重视起来,“数学文化”已是新课程的重要内容之一,数学教育是数学文化的教育。在此思想指导下的中国基础数学教育,才能更好地激发学生的数学学习兴趣,改变他们的数学观,树立学习的自信心,真正了解数学的美、数学的历史,进而促进他们人格的健康成长,扩宽他们的视野,了解多元文化的数学,这样的数学教育才是才是真正的素质教育[9]。
数学文化论文投稿篇2
浅析高中数学教学中的数学文化

摘 要:数学文化是人类知识宝库的重要组成部分,在数学教学中只是传授数学知识,解决数学问题是不够的,还应渗透数学文化,通过数学文化教育,展示数学的美和数学精神的魅力,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质。本文在介绍数学文化主要特征的基础上,对高中数学教学中如何渗透数学文化进行了分析。

关键词:高中数学;数学文化;主要功能;渗透

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和,其中物质产品主要指数学语言、数学命题、数学问题以及数学方法等方面,精神产品主要指数学思想、数学意识、数学精神等方面。在高中数学教学中渗透数学文化,是学生数学学习的基本需要,其目的是使学生在学习数学的过程中受到文化感染,领略数学的美,体悟数学文化的价值,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质,促进学生个性的良好发展。

1 数学文化的主要特征

数学是一种文化,数学文化是人类知识宝库的重要组成部分,其特征主要包括以下几个方面:

(1)历史性。数学的发展离不开历史的积淀过程,人们对数学本质的认识也是源于数学史的发展,因此,可以说数学文化具有一定的社会历史性。数学学习要讲究数学方法,而数学史是研究数学方法的重要依据,因而从某种意义上说,一切与数学有关的研究,与数学史息息相关。了解数学史,既可以增强全局观念,又可以调动学习热情。

(2)思维性。数学文化的主体是数学知识以及运用这些知识所形成的数学思想和数学方法,它们都是人类通过数学语言总结出来的可应用于现实世界的空间形式及数学关系的思维成果,因此,可以说思维是数学的内在灵魂,数学是思维的基本体现。

(3)审美性。数学是一门科学,也是一门艺术。数学中的简单性、对称性、统一性、协调性等基本特征都是数学美的重要内容。在我国古代,数学是“礼、乐、射、御、书、数”六艺之一,在西方,数学与和谐曾被认为是宇宙的主要根源,因此,可以说数学具有很强的审美性,数学世界充满了美感。而数学的美感正是数学文化对人类意志品质、高尚情操陶冶的一种体现。

2 数学文化在高中数学教学中的渗透

2.1 渗透数学史,培养数学文化意识

在高中数学教学中,教师要有意识地渗透数学史,在了解数学史的过程中,培养学生的数学文化意识。对此,可通过开设数学史选修课渗透数学史。在选修课中可以介绍一些与数学有关的具有深远意义的历史事件,如数学思想逐渐演变的历史事件,数学家逐渐纠错的历史事件等。或通过推荐有价值的与数学息息相关的作品,如张景中院士的《新概念几何》、西奥妮・帕帕斯写的《数学的奇妙》等,抑或引导学生通过网络、报刊等各种资源搜集、查找有关古今中外着名数学家的事迹,了解他们对数学做出的主要贡献,拓宽学生的数学视野,体会数学的文化品位。

2.2 渗透数学思想方法,提高学生的数学素养

数学思想方法是指对数学知识和方法形成的规律性理性认识,为分析、处理和解决数学问题提供了指导方针和解题策略。高中数学教学不能仅满足于单纯的知识传授,而是要帮助学生把握数学知识的本质,引导学生借助数学思想方法解决实际数学问题,提高自身的数学素养。如:

已知当x∈[0,1]时,不等式x2cosa-x(1-x)+(1-x)2sina>0恒成立,求a的取值范围。分析:本题通过构造的思想方法,即可轻易地求出结果。可设f(x)=x2cosa-x(1-x)+(1-x)2sina=(cosa+sina+1)x2-(1+2sina)x+sina,由题意可知:f(0)=sina>0 ①; f(1)=cosa>0 ②,在条件①②下对称轴x=∈[0,1],此时只要△<0,即sin2a> ③, 再联立①②③即可求出a的取值范围。

2.3 发展学生的数学思维,培养数学的理性精神

数学教学的关键在于发展学生的数学思维,培养数学的理性精神。数学思维是理性思维的重要形式,注重学生数学思维的培养对于提高学生的思维能力,增强学生的解题能力有着十分重要的作用。发展学生的数学思维一方面要注意培养学生的数学意识,理清学生的思维脉络。数学的知识点是前后衔接、环环紧扣的, 因此,在教学中对于每一个问题,教师要既要考虑学生原有的知识基础,又要考虑与它相关联的知识内容。只有这样,才能更好地激发学生的思维,并逐步形成知识脉络。另一方面要注意激发学生的思维动机,提高学生思维的水平。动机是人们行为活动的内趋力。激发学生思维的动机,是培养其思维能力的重要因素。在数学教学中,教师可以通过创设合理的问题情景,使学生产生情感上的共鸣,进而引发学生最强烈的思考动机和最佳的思维定向,形成良好的数学思维品质。

2.4 开展数学课题研究性学习,体悟数学文化的真正价值

在实际数学教学过程中,教师可将某些数学定理、公式作为研究性课题开展研究性学习,让学生主动去发现、检验、论证,体验到数学家发现数学的真实过程,了解数学概念、定理、公式、结论形成的过程,获得再创造的快乐,进而把握数学的本质,体悟数学文化的真正价值。同时在进行研究性学习活动的过程中,教师应给予学生适当的指导。如在进行“直线方程的推导”时,教师可以适当地提出一些问题,引导学生思考:a.在我们生活中,常通过什么方法固定一条直线?b.要想确定一条直线的方程,需要给定什么样的条件?如何求出其直线方程的一般式?当学生完成课题研究后,教师可及时展示学生的研究成果,进行合作交流,提出不同的意见,以保持学生学习数学的积极性。

总之,数学文化是数学的精髓,重视学生对数学文化的感悟,能帮助学生加深对数学的认识与理解,从而帮助学生更好地学好数学,进而爱上数学。

猜你喜欢:

1. 关于数学文化的论文投稿

2. 数学文化方面的论文发表

3. 关于数学文化的论文优秀范文

4. 关于数学文化的论文免费参考

5. 数学文化的论文范文参考

❸ 急!!数学文化赏析 的论文

数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.
进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.
中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.
古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置.
同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视.
我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.
揭示数学文化内涵,走出数学孤立主义的阴影。
数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.
半个多世纪以前,着名数学家柯朗在名着《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础."
2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述.
《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.
和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.
多侧面地开展数学文化研究
谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.
1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.
2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.
3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.
4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢
5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.
总之,数学文化离不开数学史,但是不能仅限于数学史.当数学文化的魅力真正渗入教材,到达课堂,

❹ 数学文化论文的写作思路是什么

论文的基本写作思路:就是“三段论”,即“是什么?”,“为什么?”,“怎么办?”。

1、首先解释数学文化是什么, 具体概念是什么,也就是定义以及相关情况。

2、详细进行论述问题, 对你要论述的问题进行展开分析、数学文化的起源,发展过程,这是重点,应当说透。

3、提出论文的结论。分析了问题以后,就是怎么解决问题,也是具体对策、办法。要给人以启示、启发,看了有所收获。

❺ 数学文化与生活3000字论文

数学文化
人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。
早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。
数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展
了几千年,表现出了强大的生命力。
数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。
数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。
数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的
创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。
(2)数学对人的文化素养影响
面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:
有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世
界。
有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。
有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐
民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专着《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的着作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
二,数学:一种思想方法
数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限
制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭
义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
三,数学:理性的艺术
通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,
音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。
(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。
(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情
感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显着特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维
的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材
四,数学韵味——数学的美
说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……
数学美可以分为形式美和内在美。
数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。
数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。
美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加
深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。
数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。

阅读全文

与数学文化鉴赏论文怎么写相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050