导航:首页 > 数字科学 > 初中毕业考试数学有哪些题型

初中毕业考试数学有哪些题型

发布时间:2023-06-09 20:03:59

⑴ 中考数学必考题型有哪些

我整理了一些中考数学的常考题型,大家一起来看看吧。

线段、角的计算与证明问题

中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

图形位置关系

中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

动态几何

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

数据的平均数中位数与众数

1.平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

2.将数据排序后,位置在最中间的数值.即将数据分成两部分,一部分大于该数值,一部分小于该数值.中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值

3.一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。用M表示。理性理解:简单的说,就是一组数据中占比例最多的那个数。

以上就是一些初中数学知识点的相关信息,供大家参考。

⑵ 数学考试有哪些常见题型初三的

你需要说清哪个学期、期中、期末、模拟还是中考,否则无法详细解读!现只能笼统解读一下:
初三数学考试中的常见题型不同省市区内容重点难点深度都不尽相同。总体来说主要有:
一、单选和填空:基础知识简单应用、易错的计算、技巧运用、规律探究与总结。
二、解答题:
1.计算:有理数运算、化简求值、解方程……
2.作图计算:尺规作图、三角形全等、相似、对称、旋转、勾股定理……
3.数据统计:统计图、表、平均数、众数、中卫数、方差、概率的计算与分析……
4.几何证明或计算:三角形、四边形、圆、多边形……
5.函数图像计算及证明:解析式、点坐标、线段长、围成图形面积、推理猜想……
6.用方程或函数解决实际问题:行程、利润、工程、方案选择……
7.探究规律并证明及拓展运用:图形、代数、剪接……的方法规律
8.函数图像综合计算分析证明:二次函数、一次函数、反比例函数图像综合计算分析证明猜想拓展探究……

⑶ 初中数学题型归纳整理

考试前,尤其是面临重要考试时,做好数学知识点的总结归纳很有必要。那么初中数学题型归纳整理有哪些?请看看下文。

初中数学题型归纳
一、计算题:

科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图面积、三角形(相似、全等、内角外交关系)、统计(众数、中位数、平均数)、二次函数(顶点、对称轴、表达式)、函数图像关系

二、填空题:

因式分解、二次函数解析式求解、三角形(相似、周长面积计算)、坐标(坐标点运动规律)、直线和反比例函数图像问题

三、解答题:

次方、开方、三角函数、次幂(0次、-1次)计算;

求解不等式组;

分式、多项式化简(整体代入方法求值);

方程组求解;

几何图形中证明三角形边相等;

一次函数与二次函数;

四、解答题

四边形边长、周长、面积求解;

圆相关问题(切割线、圆周角、圆心角);

统计图;

在数轴中求三角形面积;

五、解答题

二次函数(解析式、直线方程);

圆与直线关系;

三角形角度相关计算;

总体来说中考题,题目多,需要熟练掌握相关的知识点,快速做题。近些年北京中考数学题型都比较固定、难度适宜,需要在正确率方面留心,对于三角形、四边形面积计算知识板块要高度重视。
初中数学解题技巧
1.对数学考试成功的标志要有明确的认识

初中生身经无数次的数学考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是数学考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人才算……其实数学考试分数也有绝对值和相对值,绝对值是拿你自己的数学考试分数与及格线、满分线等比较的结果。相对值是将你自己的数学考试分数放在个人、班级、年级、全市等参照系中衡量其相对位置的结果。正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越比热情越低。我的观点是,数学考试成功的标志有两条:一是,只要将自己的水平正常发挥出来了,就是一次成功的数学考试。二是,不要横向与其他同学比,要纵向自己与自己比。只要将第一类问题消灭到既定目标,就是一次成功的数学考试。

2.确定数学考试目标

有资料显示,每年中考考砸的考生约占25%。因此数学考试前确定目标时,虽然你心中有了上述两条数学考试成功的标志,但是对于第一条,你千万不要以为我可以100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。三层递进模式就是:第一要保证数学考试不考砸。第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若数学考试一上来,就想100%发挥,超常发挥,就可能出现全盘皆输的惨局。那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。

3.第一轮答题要敢于放弃

三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为什么。“会答的先答,不会答的后答’到了数学考试考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。不会的题也很明了。但恰恰有些题是你乍一看会,一做起来就卡壳,或者我不能立即得出结论,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罢不忍。每每都是在这不知不觉中丧失了宝贵的时间,每次数学考试都觉得时间不够用,稀里糊涂地败下阵来。“会答的先答,不会答的后答”作为一条原则是颠扑不破的真理。但若同时将它当作数学考试方法,因为它仅是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出现有人用它灵,有人用它不灵;有时灵,有时就不灵的现象。尤其是重要的数学考试,每题必争,每分必夺,哪道题都不想轻易放弃,哪一问都想攻下来,哪一分都不想丢的时候,就往往失灵。而“三轮解题法’是一种定量的方法,量化清楚,可操作性强。

4.敢于休息30秒

当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。

为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为数学考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若用意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。数学考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。休息后进人第二轮。

5.第二轮查缺补漏

第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。

任何一名考生几乎都曾有过这样的考试经历,在数学考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。

数学考试时,从答题开始到达到数学考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,也有人下降后还能升上去,再度达到最佳思维状态,而我们希望的理想状态是,尽快达到最佳思维状态,当达到最佳思维状态后,一直持续到考试结束。

6.第三轮换思路解题

休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次数学考试中,能将自己的水平发挥出80%就是一次成功的数学考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时数学考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。

换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在数学考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。

7.变三轮解题法为自定理

三轮解题法是一种全新的数学考试答题方法,是经过实践验证的科学、合理、有效的数学考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法却要因人而异,因科而异。若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、五回合的从小学沿用至今的数学考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。比如数、理、化等是这样的三轮。而语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。
初中数学学习方法
其实要学好数学并不难,而且初中的知识掌握起来比高中容易多了。上课必须听讲,不管你多么厉害,上课不听讲就不行,因为老师有时候是会讲一些书本上没有的知识或者是他们自己的经验技巧。

课后作业必须做,也不要求你再去自己买题来做,你只需要认认真真的完成老师布置的作业就行。你需要听老师评讲作业,不管你是对的还是错的,都要听,老师就是在这个时候讲方法,所以说上课的专心最重要。

考试卷子也是一样,不要因为你是对的就不听讲了,老师讲的有时候不仅仅是那道题。

最重要的就是上面那几点,只要你做到了,你的成绩绝对不会差!最后就是多与同学交流,互相印证答题技巧,不懂多问。

猜你喜欢:

1. 初中数学必考知识点的归纳

2. 初三中考数学备考复习建议

3. 初中数学知识点归纳

4. 中考数学知识点总结

5. 数学高考重点题型归纳

⑷ 初中数学知识点总结 中考数学都考什么

中考数学考试的考查内容有哪些?主要涉及到的知识点都包括什么?下文我给大家整理了中考数学中考查的知识点,供参考!

初中数学知识点最全总结

一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的链歼橡符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的改亮系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,棚旁作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

中考数学十大解题技巧

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

⑸ 初中数学题型有哪些

复习核心
注重课本知识,查漏补缺
注重课堂学习,提高效率
注意知识的迁移,学会融会贯通
试卷的基本情况
1.试卷结构:由填空、选择、解答题等28个题目组成。
2.考试内容:根据《数学课程标准》要求,将对“数与代数”“空间与图形” “统计与概率”“实践与综合应用”四个领域的知识进行考查。按知识版块进行系统归纳代数具体为:(1)实数的概念及其运算;(2)代数式的分类、概念及其运算;(3)方程(组)的概念、性质、解法及应用:(4)不等式(组)的概念、性质、解法:(5)函数的概念,几种常见函数的图象及性质;(6)统计和概率。几何知识归纳为:(1)图形的初步认识;(2)三角形的概念、分类、定理及其应用;(3)四边形的概念、定理及其应用;(4)图形与变换;(5)相似形的概念、定理及其应用;(6)解直角三角形;(7)圆的概念、定理及其应用;
3.试题模式:以2008年西宁市数学第一次模拟考试试卷为基本样式。
4.难度的比例分配:试卷满分为120分,简单题型占60%,中等题型占30%,难度题占10%。
中考要求
中考要面向全体考生,以数与代数、空间与图形、统计与概率、实践与综合应用内容为依据,关注学生对数学的基本认识,关注学生的数学活动过程、关注学生的数学思考、关注学生解决问题的能力、关注学生对数学与现实生活以及与其他学科知识之间联系的认识等。充分体现新课标理念,力求客观、公正、全面、准确地评价学生数学学习状况。
命题规律
1.重视数学基础知识的认识和基本技能、基本思想的考查。
2.重视数学思想和方法的考查。
3.重视实践能力和创新意识的考查。
复习的基本原则
以《课程标准》和数学教材为依据,立足于掌握和巩固基本知识和基本技能,强化主干知识,注重教材的重点和难点,加强对薄弱环节的复习,及时查缺补漏,注重知识应用能力,培养灵活及综合解决问题的能力。
复习中的几点建议
1.注重课本知识,查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
2.注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3.夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
4.注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5.复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6.重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握。
7.形成数学思想,学会运用。数学思想的进一步形成和继续培养是十分重要的,因为它的应用是十分广泛的。比如方程思想、特殊和一般的思想、数形结合的思想,函数思想、分类讨论思想、化归与转化的思想等,我们要加深对这些思想的深刻理解,目前要多做一些相关内容的题目;从近几年中考情况看,最后的“压轴题”往往与此类题型有关,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换。

⑹ 中考数学考什么范围

问题一:中考中的数学一般考那几个知识点? 绝对值,相反数,科学计数法,三视图,分式方程解法,一元二次方程解法,不等式解法,一次函数图像,因式分解,勾股定理,幂的运算,三角函数值,图形的对称、平移和旋转,解直角三角形,一次函数与反比例函数结合,二次函数解析式与图像,二次塌蚂函数最值,等腰三角形,等边三角形,直角三角形,全等三角形,相似三角形,平行四边形,矩形,菱形,正方形,中垂线,角平分线,圆,概率。

问题二:中考数学的范围和重难点具体有哪些 中考来说我认为函数,几何很重要
函数一般会与几何一起综合放在大题里面考
也是一个难点
在函数中我介意多重视一下初三的二次函数
几何中三角形,平行四边形,圆很重要
一般作辅助线的方法也要多去注意
望采纳祝你中考顺利

问题三:中考数学范围在那些? (*^__^*) 嘻嘻…… 很高兴帮你解答中考都是考书本的内容书本里面的内容都会考的我是福州的中考6月12日就考完了在家里无聊的时候 就出来答问问了希望我的回答对你有所帮助最后祝愿你中考能取得好成绩芦衫宽
希望采纳

问题四:中考考试的范围? 每年考试都会有考试说明
很厚 每个考生一本
上面有范围和题型
尽管每年有变动
但大体是一样的
你可以借上届的考试说明看看
第一轮复习最好自己把书从头到尾过一遍
每个细节都不要落下
特别是化学和物理的实验
语文要复习重点的文言文篇目
把实词、翻译记牢
有精力的话把要求背诵的古诗文复习一下
英语可以买一本总复习的练习册
对照说明中的各个考点逐一击破
因为学校总复习的时间过短
基本就是做题讲题
没时间复习书
如果有兴趣的话可以做做你们省去年的中考题
了解一下出题的大致思路
但不要被里面的题吓住了
也不要做的多 杂
最后
祝复习成功!

问题五:中考数学都考什么? 5分 初中数学知识点总结
一、基本知识
一、数与代数A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,陪亮也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同......>>

问题六:考教师资格证初中数学考什么范围 去中小学教师资格考试的网站上查询,是官方的网站,也可以查看 业pei 训 教 育 wang

问题七:中考数学考点 数 与 代 数 (一)数与式 ⒈ 有理数 考试内容: 有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算. 考试要求: (1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. (2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母). (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主). (4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题. ⒉ 实数 考试内容: 无理数,实数,平方根,算术平方根,立方根,近似数和有效数字, 二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算. 考试要求: (1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根. (2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根. (3)了解无理数和实数的概念,知道实数与数轴上的点一一对应. (4)能用有理数估计一个无理数的大致范围. (5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值. (6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化). ⒊ 代数式 考试内容: 代数式,代数式的值,合并同类项,去括号. 考试要求: (1)了解用字母表示数的意义. (2)能分析简单问题的数量关系,并用代数式表示. (3)能解析一些简单代数式的实际背景或几何意义. (4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算. (5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并. ⒋ 整式与分式 考试内容: 整式,整式加减,整式乘除,整数指数幂,科学记数法. 乘法公式: . 因式分解,提公因式法,公式法. 分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算. 考试要求: (1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示). (2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘). (3)会推导乘法公式: ; ,了解公式的几何背景,并能进行简单计算. (4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数). (5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算. (二)方程与不等式 ⒈ 方程与方程组 考试内容: 方程和方程的解,一元一次方程及其解法,一元二次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个). 考试要求: (1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型. (2)会用观察、画图或计算器等手段估计方程的解. (3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程......>>

问题八:我想知道考数学教师资格证的考试范围是什么? 教师资格考试科目:
1、小学教师资格考试笔试为2个科目,科目一为综合素质,科目二为教育教学知识与能力。
2、初级中学和高级中学教师资格考试笔试为3个科目:
科目一均为综合素质;
科目二均为教育知识与能力;
科目三为学科知识与教学能力。
初中数学:数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
高中数学:数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。

问题九:中考数学,物理的范围? 所有学过的知识 不过只有你想不到的 没有他们考不到的
我们还有6天中考 中考加油

问题十:初中数学教师资格证都考什么,一共多少分 教师资格证笔试只要及格就行,也就是这算完超70分就算通过笔试。
从2015年开始,全国范围内实行国家统一考试标准,所有考生需要满足大专或以上学历。
【考试内容】
笔试考试、面试考试、普通话测试。
教师资格统考考试科目:
幼儿笔试考《综合素质》《保教知识与能力》
小学笔试考《综合素质》《教育教学知识与能力》
中学笔试考《综合素质》《教育知识与能力》《学科知识与教学能力》
普通话必须达到二级乙等,一级甲等为最高。
通过考试后,需要在教委规定的时间内去提交个人材料,包含证件原件复印件、理论和面试考试成绩合格单、普通话证书原复印件、教师证申请认定表、思想鉴定表、体检表等相关资料。
提交后由教委统一审核批准。

⑺ 中考数学都考什么

一、考基础知识,基本技能,纲本意识强。今年中考题将一如既往地采用基本题型微量的几何作图题,分值的分配大致是:代数占65%,几何点35%,其中填空选择题占70分上下,初三内容为考查的重难点,试题的覆盖率约占全卷的55%。日后,发给初三毕业班同学人手一册的《考纲说明》将有更详尽的标注,试题一般都是由易到难地编排。
无论哪种题型(大题)的中后期总要设计一两道尾巴高翘的“断梁”,下一大题又将重新从易到难,尤其是卷末的综合压轴题,激流险滩之中将呈现一派雄浑格调,是制卷者匠心独具的“戏眼”。所以整个试卷若是一条路,会有五虎挡道,若是一域水,会波澜起伏。但无论是对知识或能力的考查,都会较多地选择课本题,或根据课本题改编,紧扣教材,呈现考试的公平性。
二、考数学思想和方法,体现数学素养。
三、考查数学思想。重点考查四种数学思想:方程思想,分类讨论,数形结合及化归思想。由于函数是高中教学内容的核心,从初高中衔接角度考虑,会将函数作为重点内容考查,而且函数思想脉络中蕴含着极为丰富的数学思想内容,因此历来是各省中考题中“兵家必争之地”。
从三方面做好最后阶段的复习
1.理顺知识、查缺补漏。中考数学试题有60%—70%的题目是基础题,这些题目考查的内容一般是课本中基本概念、公式、法则、性质定理及基本运算、基本推理、基本作图、基本方法的应用及小综合应用,而且比较简单。同学们应对每一单元所包含的数学知识和数学思想方法形成清晰的网络,明确考点和常见题型。对模糊的知识点及时看书巩固,对掌握不熟练或易错的题型有针对性地重点练习。尤其是学习基础较差的同学,这一环节尤为重要,要争取基础题目不失分。这一环节可参考应试指南进行,对考点和题型进行了详细的归纳、总结、分析。
2.复习旧题、反思提高。数学知识和解题方法的应用是非常灵活的,在解题时如何运用数学知识、选取恰当的解题方法是同学们比较头疼的一个问题。有时一个题目会做了,但一换问法又不会了,原因是对题目没有理解透。实际上数学的学习和文科一样同样需要“积累”。在这么短的时间里再去做大量的题目,去钻难题,时间已经不允许,效果也不好。同学们可将以前做错或不会做的题目找出来再练一遍,在练的过程中注重反思解题的思维过程、探索过程和自己出错的原因、思维的断层。
3.模拟练习,适当调整。在最后的十天中,找2到3套去年的中考试题,模拟中考场景,进行适应性训练是很有必要的。从时间的安排、遇到难题时心态的调整,到答题的技巧等,通过模拟练习及时自我总结,适当调整,到中考时就不会那么紧张,也会应付自如了。
考试中应注意的几个问题
1.注意审题。因审题不清出现错误是中考失分的一大因素。数学题目的条件是非常严格的,若审题不清可能会出现漏解或错解。有的题目中有隐含条件,需要认真审题才能体会到,找到问题的突破口。还要注意看清答题要求,如近似数的精确度,只要求回答结果还是要给出证明等等,以免答非所问或画蛇添足。
2.注意由实际问题向数学模型的转化。中考数学试题中联系实际的问题约占十个左右,主要考查学生灵活运用知识解决实际问题的能力以及创新能力。对于此类题目首先要明确它要考查的知识点,需要调用哪些数学知识,再依据条件转化出数学模型,画出相应的图形。在解决问题的过程中还要注意所得答案要符合实际情况。
3.答题过程要规范,书写要整洁。这样便于老师阅卷,减少不必要的失分,也便于自己检查。中考阅卷是按步骤给分的,即使最后的结果错了,也会有步骤分,只有书写规范了才便于老师找到得分点。
4.合理安排时间。在中考中遇到不会做的题或一时想不出来的题目是很正常的,千万不要在一道题目上花费太多的时间,这样会影响后面试题的解答。最好的方法是先把熟悉的、会做的题目做完,再回过头来一一化解“拦路虎”。中考数学试题阅读量较大,若不能合理安排时间,很可能会做不完。
5.保持良好的心态,积极应考。良好的心态对理科考试尤为重要,也是思路顺畅的前提。过度紧张会导致思路不清,计算错误或做不出题。学会自我调控情绪,培养自信心,以积极的心态面对中考

⑻ 中考的数学试卷分为哪几大题

我今年刚参加完中考。
大多都是150分,这要看你是什么地方的了。
数学试卷分为:选择10题,填空4题,计算2题,后面都是8分到12分的大题,最后一题14分。一般共有22到24道题。
初一、初二学的考得不多,一般会出现在选择题、填空题。中考考得最多的是圆(九年级),还有二次函数占得分数较多。
73分不高,但是初三下学期,老师会把所有的考点再复习一遍,到时好好听就可以了。进步空间非常大!
希望你可以取得大的进步!

⑼ 中考数学主要是考什么内容

初一上册
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公式的几何意义
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
初一下册
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
【考察内容】
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
【考察内容】
①方程组的解法,解方程组
②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
【考察内容:】
① 一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
② 列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
【考察内容】
①常见统计图和平均数,众数,中位数的计算分析。
②方差,极差的应用分析
③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。
初二上册
三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。
(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
【考查内容】
①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。
②三角形全等融入平行四边形的证明
③三角形运动,折叠,旋转,拼接形成的新数学问题
④等腰三角形的性质与判定,面积,周长等
⑤直角三角形的性质,勾股定理是重点
⑥三角形与圆的相关位置关系
⑦三角形中位线的性质应用
(2)全等三角形
(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
【考察内容】
①轴对称和轴对称图形的性质判别。
②注意镜面对称与实际问题的解决。
(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公司的几何意义
③利用提公因式法和公式法分解因式。
(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
【考察内容】
①分式的概念,性质,意义
②分式的运算,化简求值。
③列分式方程解决实际问题。
初二下册
二次根式、勾股定理、四边形、一次函数和数据的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。
【考察内容】
①常见锐角的三角函数值的计算
②根据图形计算距离,高度,角度的应用题
③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。
(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。
【考察内容】
①多边形的内角和,外角和等问题
②图形的镶嵌问题
③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。
(4)一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
【考察内容】
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一次函数与二元一次方程组,一元一次不等式的关系。
(5)数据的分析
初三上册
二次函数、一元二次方程、旋转、圆和概率初步。
(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。
【考察内容】
①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。
【考察内容】
①中心对称和中心对称图形的性质
②旋转和平移的性质。
(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。
【考察内容】
①圆的有关性质的应用。垂径定理是重点。
② 直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算
④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
【考察内容】
①简答事件的概率求解,图表法和数形图法
②利用概率解决实际,公平性问题等
③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
初三下册
反比例函数、相似、锐角三角函数和投影与视图。
(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。
【考察内容】
①会画反比例函数的图像,掌握基本性质。
②能根据条件确定反比例函数的表达式。
③能用反比例函数解决实际问题。
(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
【考察内容】
①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
(3)锐角三角函数
(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。
【考察内容】
①常见几何体的三视图
②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。
③利用相似结合平行投影和中心投影解决实际问题。
(不同地区分值不同,可供参考)
选择题:3分一个,共14个,总分42分。
填空题:3分一个,共5个,总分15分。
解答题:共7题,总分63分。
(一)线段、角的计算与证明问题
中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。
(二)列方程(组)解决应用问题
在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。
(三)阅读理解问题
阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。
(四)多种函数交叉综合问题
初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。
(五)动态几何
从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。
(六)图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。

阅读全文

与初中毕业考试数学有哪些题型相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050