导航:首页 > 数字科学 > 数学五章包括哪些部分

数学五章包括哪些部分

发布时间:2023-06-09 20:41:25

㈠ 初二数学知识点归纳,从头到尾谢谢

初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒源祥位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增巧慧减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相孝裂答等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差

㈡ 初一数学第五章知识点归纳!jijijijijijji!

第五章:
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用
不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不 等关系的式子叫做不等式
(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.
(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成
(8).利用数轴确定一元一次不等式组的解集

㈢ 数学七年级第五章全部概念

2013-02-17 10:15http://www.doc88.com/p-405566670855.html这个是答案
1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。

2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

对顶角相等

2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角

内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。

同旁内角定义

同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。

两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。

【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。

【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。

4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.

第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。

三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.

等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。

.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;

全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。

(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到

4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

这个是概念

㈣ 七年级下册数学第五章的知识点以知识树的形式整理出来!! 快 快 快啊

七年级数学(下)期末复习知识点整理
5.1相交线
1、邻补角与对顶角
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角

∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等
即∠1=∠2
邻补角

∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行
4、平行公理的推论:
如果两条直线都与第三条直线平行,那么这两条直线也互相平行
7、两直线平行的判定方法
方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简称:同位角相等,两直线平行
方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行
简称:内错角相等,两直线平行
方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简称:同旁内角互补,两直线平行
注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。
⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。②如果两条直线都平行于第三条直线,那么这两条直线平行。
典型例题:判断下列说法是否正确,如果不正确,请给予改正:
⑴不相交的两条直线必定平行线。
⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。
⑶过一点可以且只可以画一条直线与已知直线平行
解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。“在同一平面内”是一项重要条件,不能遗漏。
⑵正确
⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。因为如果这一点不在已知直线上,是作不出这条直线的平行线的。
1、平行线的性质:
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补。
两条平行线的距离
直线AB‖CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。
注意:直线AB‖CD,在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度也就是直线AB与CD间的距离。

3、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成

每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

4、平行线的性质与判定
①平行线的性质与判定是互逆的关系
两直线平行 同位角相等;
两直线平行 内错角相等;
两直线平行 同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

5.4平移
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。

㈤ 人教版高中数学目录

人教版高中数学分成7册,即选修2册,必修5册
人教版高中数学目录
必修一
第一章 集合
§1 集合的含义与表示
§2 集合的基本关系
§3 集合的基本运算
3.1交集与并集
3.2全集与补集
第二章 函数
§1 生活中的变量关系
§2 对函数的进一步认识
2.1函数的概念
2.2函数的表示方法
2.3映射
§3 函数的单调性
§4 二次函数性质的再研究
4.1二次函数的图像
4.2二次函数的性质
§5 简单的幂函数
第二章 指数函数与对数函数
§1 正指数函数
§2 指数扩充及其运算性质
2.1指数概念的扩充
2.2指数运算是性质
§3 指数函数
3.1指数函数的概念
3.2指数函数 的图像和性质
3.3指数函数的图像和性质
§4 对数
4.1对数及其运算
4.2换底公式
§5 对数函数
5.1对数函数的概念
5.2 的图像和性质
5.3对数函数的图像和性质
§6 指数函数、幂函数、对数函数增长的比较
第四章 函数的应用
§1 函数和方程
1.1利用函数性质判定方程解的存在
1.2利用二分法求方程的近似解
§2 实际问题的函数建模
2.1实际问题的函数刻画
2.2用函数模型解决实际问题
2.3函数建模案例
必修二
第一章 立体几何初步
§1 简单几何体
1.1简单旋转体
1.2简单多面体
§2 直观图
§3 三视图
3.1简单组合体的三视图
3.2由三视图还原成实物图
§4 空间图形的基本关系与公理
4.1空间图形基本关系的认识
4.2空间图形的公理
§5 平行关系
5.1平行关系的判定
5.2平行关系的性质
§6 垂直关系
6.1垂直关系的判定
6.2垂直关系的性质
§7 简单几何体的面积和体积
7.1简单几何体的侧面积
7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积
7.3球的表面积和体积
第二章 解析几何初步
§1 直线和直线的方程
1.1直线的倾斜角和斜率
1.2直线的方程
1.3两条直线的位置关系
1.4两条直线的交点
1.5平面直接坐标系中的距离公式
§2 圆和圆的方程
2.1圆的标准方程
2.2圆的一般方程
2.3直线与圆、圆与圆的位置关系
§3 空间直角坐标系
3.1空间直接坐标系的建立
3.2空间直角坐标系中点的坐标
3.3空间两点间的距离公式
必修三
第一章 统计
§1 从普查到抽样
§2 抽样方法
2.1简单随机抽样
2.2分层抽样与系统抽样
§3 统计图表
§4 数据的数字特征
4.1平均数、中位数、众数、极差、方差
4.2标准差
§5 用样本估计总体
5.1估计总体的分布
5.2估计总体的数字特征
§6 统计活动:结婚年龄的变化
§7 相关性
§8最小二乘估计
第二章 算法初步
§1 算法的基本思想
1.1算法案例分析
1.2排序问题与算法的多样性
§2 算法框图的基本结构及设计
2.1顺序结构与选择结构
2.2变量与赋值
2.3循环结构
§3 几种基本语句
3.1条件语句
3.2 循环语句
第三章 概率
§1 随机事件的概率
1.1频率与概率
1.2生活中的概率
§2 古典概型
2.1古典概型的特征和概率计算公式
2.2建立概率模型
2.3互斥事件
§3 模拟方法——概率的应用
必修四
第一章 三角函数
§1 周期现象
§2 角的概念的推广
§3 弧度制
§4 正弦函数和余弦函数的定义与诱导公式
4.1任意角的正弦函数、余弦函数的定义
4.2单位圆与周期性
4.3单位圆与诱导公式
§5 正弦函数的性质与图像
5.1从单位圆看正弦函数的性质
5.2正弦函数的图像
5.3正弦函数的性质
§6 余弦函数的图像和性质
6.1余弦函数的图像
6.2余弦函数的性质
§7 正切函数
7.1正切函数的定义
7.2正切函数的图像和性质
7.3正切函数的诱导公式
§8 函数 的图像
§9 三角函数的简单应用
第二章 平面向量
§1 从位移、速度、力到向量
1.1位移、速度和力
1.2向量的概念
§2 从位移的合成到向量的加法
2.1向量的加法
2.2向量的减法
§3 从速度的倍数到数乘向量
3.1数乘向量
3.2平面向量基本定理
§4 平面向量的坐标
4.1平面向量的坐标表示
4.2平面向量线性运算的坐标表示
4.3向量平行的坐标表示
§5 从力做的功到向量的数量积
§6 平面向量数量积的坐标表示
§7 向量应用举例
7.1点到直线的距离公式
7.2向量的应用举例
第三章 三角恒等变形
§1 同角三角函数的基本关系
§2 两角和与差的三角函数
2.1两角差的余弦函数
2.2两角和与差的正弦、余弦函数
2.3两角和与差的正切函数
§3 二倍角的三角函数
必修五
第一章 数列
§1 数列
1.1数列的概念
1.2数列的函数特性
§2 等差数列
2.1等差数列
2.2等差数列的前n项和
§3 等比数列
3.1等比数列
3.2等比数列的前n项和
§4 数列在日常经济生活中的应用
第二章 解三角形
§1 正弦定理与余弦定理
1.1正弦定理
1.2余弦定理
§2 三角形中的几何计算
§3 解三角形的实际应用举例
第三章 不等式
§1 不等关系
1.1不等关系
1.2不等关系与不等式
§2 一元二次不等式
2.1一元二次不等式的解法
2.2一元二次不等式的应用
§3 基本不等式
3.1基本不等式
3.2基本不等式与最大(小)值
§4 简单线性规划
4.1二元一次不等式(组)与平面区域
4.2简单线性规划
4.3简单线性规划的应用
选修2—1
第一章 常用逻辑用语
§1 命题
§2 充分条件与必要条件
2.1充分条件
2.2必要条件
2.3充要条件
§3 全称量词与存在量词
3.1全称量词与全称命题
3.2存在量词与特称命题
3.3全称命题与特称命题的否定
§4 逻辑连结词“且”“或”“非”
4.1逻辑连结词“且”
4.2逻辑连结词“或”
4.3逻辑连结词“非”
第二章 空间向量与立体几何
§1 从平面向量到空间向量
§2 空间向量的运算
§3 向量的坐标表示和空间向量基本定理
3.1空间向量的标准正交分解与坐标表示
3.2空间向量基本定理
3.3空间向量运算的坐标表示
§4 用向量讨论垂直与平行
§5 夹角的计算
5.1直线间的夹角
5.2平面间的夹角
5.3直线与平面的夹角
§6 距离的计算
第三章 圆锥曲线与方程
§1 椭圆
1.1椭圆及其标准方程
1.2椭圆的简单性质
§2 抛物线
2.1抛物线及其标准方程
2.2抛物线的简单性质
§3 双曲线
3.1双曲线及其标准方程
3.2双曲线的简单性质
§4 曲线与方程
4.1 曲线与方程
4.2圆锥曲线的共同特征
4.3直线与圆锥曲线的交点
选修2—2
第一章 推理与证明
§1 归纳与类比
1.1归纳推理
1.2类比推理
§2 综合法与分析法
2.1综合法
2.2分析法
§3 反证法
§4 数学归纳法
第二章 变化率与导数
§1 变化的快慢与变化率
§2 导数的概念及其几何意义
2.1导数的概念
2.2导数的几何意义
§3 计算导数
§4 导数的四则运算法则
4.1导数的加法与减法法则
4.2导数的乘法与除法法则
§5 简单复合函数的求导法则
第三章 导数的应用
§1 函数的单调性与极值
1.1导数与函数的单调性
1.2函数的极值
§2 导数在实际问题中的应用
2.1实际问题中导数的意义
2.2最大值、最小值问题
第四章 定积分
§1 定积分的概念
1.1定积分的背景——面积和路程问题
1.2定积分
§2 微积分基本定理
§3 定积分的简单应用
3.1平面图形的面积
3.2简单几何体的体积
第五章 数系的扩充与复数的引入
§1 数系的扩充与复数的引入
1.1数的概念的扩展
1.2复数的有关概念
§2 复数的四则运算
2.1复数的加法与减法
2.2复数的乘法与除法

㈥ 初二数学都有哪些知识点

《新初二曹.笑数学秋季培优班(人教版高清视频)》网络网盘资源下载

链接:

提取码: q2vy

若资源有问题欢迎追问~

㈦ 【人教版】高中数学教材总目录

总目录如下:

必修一

第一章 集合

1.集合的含义与表示

2.集合的基本关系

3.集合的基本运算

3.1交集与并集

3.2全集与补集

第二章 函数

1.生活中的变量关系

2.对函数的进一步认识

2.1函数的概念

2.2函数的表示方法

2.3映射

3.函数的单调性

4.二次函数性质的再研究

4.1二次函数的图像

4.2二次函数的性质

5.简单的幂函数

第二章 指数函数与对数函数

1.正指数函数

2.指数扩充及其运算性质

2.1指数概念的扩充

2.2指数运算是性质

3.指数函数

3.1指数函数的概念

3.2指数函数 的图像和性质

3.3指数函数的图像和性质

4.对数

4.1对数及其运算

4.2换底公式

5.对数函数

5.1对数函数的概念

5.2 的图像和性质

5.3对数函数的图像和性质

6.指数函数、幂函数、对数函数增长的比较

第四章 函数的应用

1.函数和方程

1.1利用函数性质判定方程解的存在

1.2利用二分法求方程的近似解

2.实际问题的函数建模

2.1实际问题的函数刻画

2.2用函数模型解决实际问题

2.3函数建模案例

必修二

第一章 立体几何初步

1.简单几何体

1.1简单旋转体

1.2简单多面体

2.直观图

3.三视图

3.1简单组合体的三视图

3.2由三视图还原成实物图

4.空间图形的基本关系与公理

4.1空间图形基本关系的认识

4.2空间图形的公理

5.平行关系

5.1平行关系的判定

5.2平行关系的性质

6.垂直关系

6.1垂直关系的判定

6.2垂直关系的性质

7.简单几何体的面积和体积

7.1简单几何体的侧面积

7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积

7.3球的表面积和体积

第二章 解析几何初步

1.直线和直线的方程

1.1直线的倾斜角和斜率

1.2直线的方程

1.3两条直线的位置关系

1.4两条直线的交点

1.5平面直接坐标系中的距离公式

2.圆和圆的方程

2.1圆的标准方程

2.2圆的一般方程

2.3直线与圆、圆与圆的位置关系

3.空间直角坐标系

3.1空间直接坐标系的建立

3.2空间直角坐标系中点的坐标

3.3空间两点间的距离公式

必修三

第一章 统计

1.从普查到抽样

2.抽样方法

2.1简单随机抽样

2.2分层抽样与系统抽样

3.统计图表

4.数据的数字特征

4.1平均数、中位数、众数、极差、方差

4.2标准差

5.用样本估计总体

5.1估计总体的分布

5.2估计总体的数字特征

6.统计活动:结婚年龄的变化

7.相关性

8.最小二乘估计

第二章 算法初步

1.算法的基本思想

1.1算法案例分析

1.2排序问题与算法的多样性

2.算法框图的基本结构及设计

2.1顺序结构与选择结构

2.2变量与赋值

2.3循环结构

3.几种基本语句

3.1条件语句

3.2 循环语句

第三章 概率

1.随机事件的概率

1.1频率与概率

1.2生活中的概率

2.古典概型

2.1古典概型的特征和概率计算公式

2.2建立概率模型

2.3互斥事件

3.模拟方法——概率的应用

必修四

第一章 三角函数

1.周期现象

2.角的概念的推广

3.弧度制

4.正弦函数和余弦函数的定义与诱导公式

4.1任意角的正弦函数、余弦函数的定义

4.2单位圆与周期性

4.3单位圆与诱导公式

5.正弦函数的性质与图像

5.1从单位圆看正弦函数的性质

5.2正弦函数的图像

5.3正弦函数的性质

6.余弦函数的图像和性质

6.1余弦函数的图像

6.2余弦函数的性质

7.正切函数

7.1正切函数的定义

7.2正切函数的图像和性质

7.3正切函数的诱导公式

8.函数的图像

9.三角函数的简单应用

第二章 平面向量

1.从位移、速度、力到向量

1.1位移、速度和力

1.2向量的概念

2.从位移的合成到向量的加法

2.1向量的加法

2.2向量的减法

3.从速度的倍数到数乘向量

3.1数乘向量

3.2平面向量基本定理

4.平面向量的坐标

4.1平面向量的坐标表示

4.2平面向量线性运算的坐标表示

4.3向量平行的坐标表示

5.从力做的功到向量的数量积

6.平面向量数量积的坐标表示

7.向量应用举例

7.1点到直线的距离公式

7.2向量的应用举例

第三章 三角恒等变形

1.同角三角函数的基本关系

2.两角和与差的三角函数

2.1两角差的余弦函数

2.2两角和与差的正弦、余弦函数

2.3两角和与差的正切函数

3.二倍角的三角函数

必修五

第一章 数列

1.数列

1.1数列的概念

1.2数列的函数特性

2.等差数列

2.1等差数列

2.2等差数列的前n项和

3.等比数列

3.1等比数列

3.2等比数列的前n项和

4.数列在日常经济生活中的应用

第二章 解三角形

1.正弦定理与余弦定理

1.1正弦定理

1.2余弦定理

2.三角形中的几何计算

3.解三角形的实际应用举例

第三章 不等式

1.不等关系

1.1不等关系

1.2不等关系与不等式

2.一元二次不等式

2.1一元二次不等式的解法

2.2一元二次不等式的应用

3.基本不等式

3.1基本不等式

3.2基本不等式与最大(小)值

4.简单线性规划

4.1二元一次不等式(组)与平面区域

4.2简单线性规划

4.3简单线性规划的应用

选修2-1

第一章 常用逻辑用语

1.命题

2.充分条件与必要条件

2.1充分条件

2.2必要条件

2.3充要条件

3.全称量词与存在量词

3.1全称量词与全称命题

3.2存在量词与特称命题

3.3全称命题与特称命题的否定

4.逻辑连结词“且”“或”“非”

4.1逻辑连结词“且”

4.2逻辑连结词“或”

4.3逻辑连结词“非”

第二章 空间向量与立体几何

1.从平面向量到空间向量

2.空间向量的运算

3.向量的坐标表示和空间向量基本定理

3.1空间向量的标准正交分解与坐标表示

3.2空间向量基本定理

3.3空间向量运算的坐标表示

4.用向量讨论垂直与平行

5.夹角的计算

5.1直线间的夹角

5.2平面间的夹角

5.3直线与平面的夹角

6.距离的计算

第三章圆锥曲线与方程

1.椭圆

1.1椭圆及其标准方程

1.2椭圆的简单性质

2.抛物线

2.1抛物线及其标准方程

2.2抛物线的简单性质

3.双曲线

3.1双曲线及其标准方程

3.2双曲线的简单性质

4.曲线与方程

4.1 曲线与方程

4.2圆锥曲线的共同特征

4.3直线与圆锥曲线的交点

选修2-2

第一章 推理与证明

1.归纳与类比

1.1归纳推理

1.2类比推理

2.综合法与分析法

2.1综合法

2.2分析法

3.反证法

4.数学归纳法

第二章 变化率与导数

1.变化的快慢与变化率

2.导数的概念及其几何意义

2.1导数的概念

2.2导数的几何意义

3.计算导数

4.导数的四则运算法则

4.1导数的加法与减法法则

4.2导数的乘法与除法法则

5.简单复合函数的求导法则

第三章 导数的应用

1.函数的单调性与极值

1.1导数与函数的单调性

1.2函数的极值

2.导数在实际问题中的应用

2.1实际问题中导数的意义

2.2最大值、最小值问题

第四章 定积分

1.定积分的概念

1.1定积分的背景——面积和路程问题

1.2定积分

2.微积分基本定理

3.定积分的简单应用

3.1平面图形的面积

3.2简单几何体的体积

第五章 数系的扩充与复数的引入

1.数系的扩充与复数的引入

1.1数的概念的扩展

1.2复数的有关概念

2.复数的四则运算

2.1复数的加法与减法

2.2复数的乘法与除法

(7)数学五章包括哪些部分扩展阅读:

人教版即由人民教育出版社出版,简称为人教版。

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身。

阅读全文

与数学五章包括哪些部分相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:702
乙酸乙酯化学式怎么算 浏览:1370
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1008
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1367
中考初中地理如何补 浏览:1257
360浏览器历史在哪里下载迅雷下载 浏览:669
数学奥数卡怎么办 浏览:1347
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1446
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:821
武大的分析化学怎么样 浏览:1210
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1386
化学理学哪些专业好 浏览:1450
数学中的棱的意思是什么 浏览:1015