‘壹’ 你认为数学是什么
数学是一种乐趣,一种智桥亏慧,也是一种必不可少。
数学从古至今贯穿始终。从原始人采用贝壳计数,刻骨划痕;到古人的圆周率的发现以及不断精确,阿基米德定律,不定方程;再到近代的微分方程, 坐标系,微积分,概率论;最后到现在的 集合论,数学分析,公理化体系,组合数学等。随时随地都体现了数学。
从古自今数学大致可以分为四个时期:
在这四个时期内,数学不断发展完善并为人类做出贡献。从古代房屋的建设,大坝的修建,到现在郑培的高楼大厦,水利工程等,都充满着数学。
而我们在不同的年纪,敏丛神对数学也会有这不一样的认知。
在小学时,我们可能觉得数学就是加减乘除,再加上一些简单的方程;到了初中,我们可能觉得数学是更加复杂的方程,以及一些简单的几何问题;到了高中,我们可能会遇到函数题,不等式等;到了大学,我因为每个人专业不同而接触不同方面的数学。
总而言之,数学究竟是什么对没有具体言论去概括,而是要我们每个人去不断发现认知的过程。
‘贰’ 数学的含义是什么
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统。
把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
应用数学及美学
一些数学只和生成它的领域有关,且用来解答此领域的更多问题。但一般被一领域生成的数学在其他许多领域内也十分有用,且可以成为一般的数学概念。即使是“最纯的”数学通常亦有实际的用途,此一非比寻常的事实,被1963年诺贝尔物理奖得主维格纳称为“数学在自然科学中不可想象的有效性”。
如同大多数的研究领域,科学知识的爆发导致了数学的专业化。主要的分歧为纯数学和应用数学。在应用数学内,又被分成两大领域,并且变成了它们自身的学科——统计学和计算机科学。
许多数学家谈论数学的优美,其内在的美学及美。“简单”和“一般化”即为美的一种。另外亦包括巧妙的证明,如欧几里得对存在无限多素数的证明;又或者是加快计算的数值方法,如快速傅里叶变换。
高德菲·哈罗德·哈代在《一个数学家的自白》一书中表明他相信单单是美学上的意义,就已经足够作为纯数学研究的正当理由。
以上内容参考网络-数学
‘叁’ 谈谈你的理解,数学是什么
数学是研究数量、结构、变化以及空间模型等概念的一门学科.通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理.
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性.可量度属性的存在与参数无关,但其结果却取决于参数的选择.例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关.
数学是研究现实世界中数量关系和空间形式的科学.简单地说,是研究数和形的科学.由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数.
基础数学的知识与运用总是个人与团体生活中不可或缺的一块.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日.
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等.数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展.数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现.
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……).
‘肆’ 数学是什么什么是数学
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受。
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年。
算术(加减乘除)也自然而然地产生了。更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普。历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备。但尚未出现极限的概念。
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发。
‘伍’ 什么是数学
1+1=2
数学是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用天、月还是用年、时分秒来量度,它的可量度属性永远存在,但准确性与这些参数有关。数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。