导航:首页 > 数字科学 > 初中数学教育应该注意什么

初中数学教育应该注意什么

发布时间:2023-06-10 17:32:21

A. 初中数学教师如何让学生学好数学

导语:我们说,学习初中数学不同于学习其它的学科偏重于记忆,如果学习数学偏重于死记硬背,那么要学习好数学则是很难的。我们要引导新时期新形势下的初中学生学习好数学一定要培养学生具有探究性的思维能力和学习兴趣。

初中数学教师如何让学生学好数学

一、加强学法指导,培养良好学习习惯

反复使用的方法将变成人们的习惯行为。什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

1.制定计划使学习目的明确

时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

2.课前预习或者自学是学生上好新课,取得较好学习效果的基础

课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。

3.上课是理解和掌握基本知识、基本技能和基本方法的关键环节

“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

4.及时复习是高效率学习的重要一环

通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的`新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。

5.独立作业

是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。

6.解决疑难

是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

7.系统小结

是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”

8.课外学习

包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。

二、循序渐进,防止急躁

由于年龄不大,阅历有限,为数不少的初中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,我们让学生懂得学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成,为什么初中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。

三、创新教育评价方法,巩固教育效果

课堂教育评价的意图是全部了解学生的学习情况,鼓励学生的学习热心,推进学生的全部发展。在自立探求为主的课堂上老师将评价的主动权交给学生。展开学生自评、互评、师生共评等多种形式,以鼓励评价为主,既评价学习进程又评价学习成果,有助于推进学生探求学习。选用多种评价方法来表现学生团体才智,发扬学生协作学习、互助学习,培育学生交往能力和竞争意识。

新课程理念强调,在教育活动中,老师应是组织者、引导着、协作者,有用教育要以学生的前进和发展为主旨。在新课程理念下,施行有用教育要杰出老师的主导地位,紧紧围绕教育三维目标,激起学生参加课堂教育活动的主动性和积极性,这样才干非常好地施行有效教育。

四、研究学科特点,寻找最佳学习方法

数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。

五、加强辅导,化解分化点

如前所述初中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点。对易分化的地方我们采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。

作为一名新形势下的初中数学教师,我们必须积极学习新课标所倡导的诸多先进理念,并将其灵活运用到日常教学实践之中,提高学生的数学学习积极性,推动初中数学教育的良性发展,进而为促进初中学生数学综合素养的提升做好充分准备。

B. 新手初中数学老师初次教学要注意哪些

作为一个新手老师,要注意的地方有很多,我简单列举几个:

问题一:不会评课

学校里面的评课是经常进行的。很多新老师听了别人的课,却不知道哪里好,也不知道哪里不好,听课时只会拿着本子狂抄板书,记得那叫一个满满当当。

然后轮到你评课的时候,其他老师看起来漫不经心不怎么关注你,但其实你的所有内容,他们都听进去了,而且已经给你打好了分。

其实听课是个技术活,得不断训练。既要能看到宏观层面的问题,也要看到微观的一些小细节。

别人的优点和缺点都知道了以后,还能用流畅的语言恰到好处地表达岀你的观点,那么你的能力就开始上升了:你渐渐学会了鉴赏。

有机会多听听名师们的评课,会让你如沐春风,豁然开朗。

问题二:不知道公开课的重要性

作为一个普通新人老师,这是展现你业务能力的最好的方式。公开课的表现好坏,决定着今后的教研比赛中有没有你的份,而教研比赛又行迅扒会关联到今后的职称评定和其他晋升。

人都有第一印象,一战成名后,后面的机会很多。

一定要知道的是,实力固然重要,但一个可以展示实力的平台也必不可少!


问题八:不要被同化

老师职业倦怠感比较严重,说白了就是负能量比较多。

不少混日子的老师都有一套自己的生存法则,作为新老师很容易被带偏,工作时间不长却一副老气横秋的状态。

我不希望你成为一个满腹牢骚,没事就念叨工资绩效多少的人。我觉得吧,特俗。


问题九:备课不充分

在授课之前,一定要做好备课准备,从题目出发,设计每节课程,契合大纲的要求和规范进行备课,在微信搜一下“授课神器”里面有很多老师备课过程中可能会用得到的工具,多听多看多想,才能上好课程,加油!

C. 初中学生学数学学习中应该注意哪些问题

1. 学生的数学学习无目的、无计划、无标准要求。对学了什么, 应掌握什么,有什么作用是茫然的,有的学生竟说“成绩好有什么用,给我多少奖金”,学习具有盲目性。
2. 学生对数学学习不主动、自觉性差, 对学习内容的理解和学习任务的完成是被动消极的, 学习本是自己的事,却常推委、拖拉或希望同学帮忙,所以同学间常出现抄作业现象,学习具有依赖性。
3. 学生有上进的心理,但缺乏勤奋刻苦的学习精神,学习兴趣不浓也不愿培养,不作意志努力,学习中思想常常走神或学习时间内干其他事情, 具有学习意志不坚定性。
4. 学生学习有了一知半解就感到满足,但遇到困难又垂头伤气,遇难而退或绕道而行, 得过且过, 致使部分学生学习成绩难以提高,甚至下滑,学习缺乏思想性。
5. 学生学习不注重方法,不讲求逻辑联系,分析问题思路杂乱,表达东拼西凑, 思维不严谨。 明知这方面过不了关,但也不思改进,学习具有随意性。

D. 如何教好初中数学

数学这门学科对学生来说,一直是一大难题,而要如何去解决学生的问题,提高教学的效率,对于老师来说也很犯难。下面我为大家分享一些数学的教学方法,欢迎阅读参考。

如何教好初中数学

一、认真搞好教学各个环节的工作。

作为教师在教学中要做到认真钻研教材教法、备教材、备学生、备大纲,尽可能深入浅出的进行讲授,作业要强调精练,要认真批改作业,及时反馈信息,及时调整上课方法、课程进度等。 二、树立所有的学生都能教好的观念。

每个人均有独特的天赋,都有培养价值,关键在于要按照他们早期所表现出来的天赋,适应其特点进行教育。数学教学的困难是暂时的,核心是教师首先应转变观念,教师应树立所有的学生都能教好的意识,在充分考虑学生原有水平的基础上提出适度要求,用自己的信念去鼓舞学生获取进步,这是做好数学教学工作的前提。

三、唤起学生学习的热情。

教师不光是知识的传授者,还肩负着促进学生人格健康发展的重任。其中最迫切的是爱的需要、信任的需要,学生能从教师的一个眼神、一个手势、一个语态中了解到教师对他们的期望。因此,教师平时要利用一切机会主动地接近他们,与他们进行心理交流,和他们交朋友。哪怕是对他们的微微一笑,一句口头表扬,一个热情鼓励的目光,都可能为其提供热爱学习,进而刻苦钻研数学的契机,给学生一种无形的力量。

四、让学生树立成功的自信心。

较差学生数学学习跟不上是由于在学习上基础薄弱,他们缺乏学习自信心。教师就应充分相信学生,引导学生树立自信心,帮助学生不断成功,提高学生自尊自信的水平,形成积极的自我学习的机制。

五、科学运用各种教学手段,激发学生的求知欲。

数学教学讲成“报告课”,容易养成学生的惰性和乏味的感觉。学习没劲头,但我们知道,绝大多数学生对新鲜事物都有敏感性、好奇心,根据这种心理,应改变传统的讲授方法,运用多种教学手段,例如:使用教学模型、电脑等教学方法。设计出新颖的教学过程,把数学知识转化为激发学生求知欲望的刺激物,从而引发其产生进取心。

通过对较差学生的辅导,我最大的感触就是对差生要更有耐心,讲话语速一定要慢、清晰,教学讲解需要更清楚、更详细。甚至对所讲的问题要逐字逐句的进行分析。如有些几何语言、数学语言,我在教学过程中要求学生在理解的基础上进行背诵,反复记忆,达到熟练运用。教学过程中一定要作到不厌其烦,作为数学教师,在教差生时要特别注重组织教学的技巧,问题分析要透彻,解题思路一定要简洁清晰,要善于调动学生情绪,活跃课堂气氛,使学生的思维充分活跃起来,才能更好的实施教学,更有利于学生接受知识。

数学教学中数学思想和方法训练

我们在运用数学方法解决具体问题的过程也就是人们的感性认识不断积累的过程,这种量的积累最终结果是上升为数学思想。在初中数学教学中它们是同等重要的,我们应特别注重学生在数学思想和数学方法方面的训练。

一、注重数学思想和数学方法训练的教学策略

在初中数学教学中,应该特别注重学生数学思想和数学方法的训练,重点应该牢牢把握以下两个方面的策略。

(一)结合新课标的具体要求,落实层次教学法

新的课程标准对初中数学中渗透的数学思想和方法有了解、理解、会应用三个层次的要求,需要学生了解的数学思想主要有函数思想、化归的思想、数形结合的思想、分类思想、类比思想等。我们在教学中,就是要把这些抽象的思想通过具体的数学方法体现出来,把复杂的问题简单化。比如,在初中数学中化归思想是渗透在学习过程中一个普遍的数学思想,七年级数学中“一元一次方程简介”这一章,为体现这一思想在解方程中具有指导作用,每一步都点明了解方程的目的,各个步骤的目的就是要使一元一次方程变形为x=a的形式,把方程中的未知转化为已知。在课程标准中要求了解的数学方法有分类法和反证法,要求理解或者会应用的数学方法有待定系数法、图像法、降次法、配方法、消元法、换元法等。在具体教学中,教师要认真把握好这三个层次,不能超出新课标中对学生的要求,不能将本来需要学生了解的内容上升到理解或者会用的层次,打击学生的积极性。

(二)通过数学方法认识数学思想,充分发挥数学思想对数学方法的指导

数学方法是比较具体的,是具体数学思想得以实施的技术手段,数学思想是比较抽象的,属于数学观念的范畴。因此,在教学过程中,要通过加强学生对数学方法的掌握和运用来了解数学思想,在了解了数学思想以后,在处理类似数学问题的时候,可以运用数学思想对我们的求解过程进行指导。例如,我们在向学生讲授化归思想的时候,首先要通过一系列的习题,让学生对化归思想所体现出来的从未知到已知、从一般到特殊、从局部到整体的转化中了解和认识这一数学思想,然后,纵观初中数学的各章节内容,大多都体现了这一思想,因此,在处理有关数学问题的时候,要运用这一思想对求解的过程进行指导。让学生通过对数学方法的学习逐步领略数学思想的内涵,同时,用数学思想指导和深化数学方法的运用。

二、遵循规律,把握原则,实施创新教育

培养学生的能力是数学教育的重要目标之一,尤其是通过数学教育培养学生的创新能力。数学学习可以发展学生的理性思维,这也是新课标的重要要求。为此,我们应该把握好以下几方面的原则,切实培养学生的思维能力和创新能力。一是渗透数学方法的同时了解数学思想。初中学生的数学知识相对比较匮乏,抽象思维能力较差,不能够把数学思想和数学方法作为一门独立的课程,只能以数学知识为载体,把数学思想和数学方法渗透到具体教学中。二是通过数学方法的训练进一步理解数学思想。数学思想的内容很丰富,方法也是多样化的,必须分层次进行渗透和教学活动,这就需要教师全面地钻研教材,挖掘教材中进行数学思想、方法渗透的重要因素,由浅入深、由易到难分层次地贯彻数学思想和数学方法。三是在掌握数学方法的基础上运用数学思想。在数学的学习过程中,我们都是通过课堂听讲、课后复习、习题训练等几个环节,才能真正掌握和巩固数学知识。在掌握数学思想和数学方法的时候,也要遵循循序渐进的规律,教师要有意识地让学生进行有针对性的训练,进而掌握数学思想和数学方法,培养学生自觉运用数学思想和数学方法的观念,逐步建立起自己的数学思想和数学方法系统。四是在提炼数学方法的过程中完善数学思想。在教学过程中,要改变传统教学模式下的“照本宣科”,要创新教学方法,在教学过程中要对课堂内容进行精心的组织,特别是要在涉及数学思想和数学方法的时候,有意识地进行及时的总结,引导学生进行探究性学习的同时,总结学习的过程,梳理知识体系,并能够准确地提炼出数学思想和数学方法。在教学中,也可以引入一些经典的故事,让学生从中提炼数学思想和数学方法。比如,可以引导学生从鲁班造锯的故事中提炼出数学中的类比思想,让学生从曹冲称象的故事中提炼出转化思想,也就是化归的思想,从司马光砸缸的故事中提炼出逆向思维的思想。通过这些故事,不仅可以活跃课堂气氛,增加课堂感染力,提高学生们的学习兴趣,更有利于培养学生从具体事例中提炼数学思想和数学方法的能力。

E. 数学初中补习应该注意什么

不少学生不太适应初中的数学,因为初中数学难度骤增,学科也变多,不少学生难以适应,那么数学初中补习应该注意什么呢?可以从以下三方面进行切入。
首先,有些题目可以从不同的角度分析,得到不同的解决方案。同时,也启发学生拓宽他们的思维。在尝试解题的时候,可以从不同的角度思考,对不同的练习进行分类,整合所学的知识,提高解决问题的灵活性。
其次是要用对学习方法,去年暑假送孩子去姑姑家对面的卓越教育学习的时候,他们会用搭梯子的方法进行教学,将知识点进行了拆分,孩子学习起来不会吃力,这样对于孩子后期的应用题正确率的提升会很高。这关系到打好薄弱环节和巩固擅长领域的攻坚战策略,不断归纳总结,别让自己一直处于错误的解题思路里,强迫自己”植入“正确的框架,走出舒适区,在老师的带领下一步一步的占领更多的领地。
最后是要增强记忆点,人的记忆有记忆曲线的,如果不及时进行稳固的话,就会慢慢地忘记,应该把知识点进行复习整体,才不会将学习的知识忘得一干二净。依照“肌肉记忆”的原理,不断熟悉和强化数学知识,才能将数学提升至上一个层次。
数学初中补习其实很简单,掌握合适的方法,及时巩固复习,数学其实并不难。

F. 中学数学教学有哪几大原则

第一节 中学数学的教学原则
教学原则是教学规律的反映,教学经验的结晶,是指导教学工作的基本要求,也是教师在教学工作中必须遵守的基本准则.
我国教育界在教学论中确定的一般教学原则有:科学性与思想性相结合的原则,理论联系实际的原则,教师的主导作用与学生的自觉性、积极性相结合的原则,感知与理解相结合的原则,循序前进性与系统性原则,掌握知识技能的巩固性原则,符合学生年龄特点和接受能力的原则,统一要求与因材施教的原则.
在一般教学原则的指导下,由于各科教学还有其特殊性,所以各学科的教学还应遵循符合本学科特点和学生年龄特征的学科教学原则.
在以传授知识为主的时代,我国广大的数学教育工作者和数学教师根据中学数学的特点、教学实践经验和中学生的年龄特征,总结出了许多行之有效的中学数学教学原则,其中影响最大的是:严谨性与量力性相结合的原则,抽象与具体相结合的原则,理论与实践相结合的原则,巩固与发展相结合的原则.
一.严谨性与量力性相结合的原则
1.数学理论的严谨性
严谨性是数学科学理论的基本特点之一,其涵义主要是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外.它主要表现在以下两个方面:其一,概念(除原始概念外)必须定义;其二,命题(除公理外)都要证明.因此,
(1)每个数学分科所包含的数学概念都分为两类:原始概念和被定义过的概念.原始概念是这个学科中定义其他概念的出发点,其本质属性在该学科中无法用定义方式来表述,只能用公理来揭示;被定义的概念都必须确切的、符合逻辑要求.
(2)每个数学分科所包含的真命题也分为两类:公理和定理.公理是本学科中被挑选出来作为证明其他真命题的正确性的原始依据,其本身的正确性不加逻辑证明而被承认.但是,它们作为一个体系,必须满足相容性(无矛盾性)、独立性和完备性;定理都必须经过逻辑证明.
(3)每个数学分支的概念和真命题按一定的逻辑顺序构成一个体系.在该体系中,每个被定义的概念必须用前面已知的概念来定义;每个定理必须由前面已知其正确性的命题推导出来.
(4)概念和命题的陈述以及命题的论证过程日益符号化、形式化.
但是,数学的严谨性是相对的,是逐步发展的.严谨性并不是各数学分支发展初期就具有的,只是到了最后完善阶段才能达到.例如,函数概念经历了七个发展阶段才逐步严谨起来.欧氏几何直到19世纪末希尔伯特公理体系建立后才真正严谨起来.数学的严谨性还有另一方面的相对性.例如侧重于理论的基础数学和侧重于应用的应用数学,二者对于严谨性的要求是不尽相同的.前者要求高,而后者则相对地要求较低一些.
2.对中学生的量力性
在掌握数学科学的严谨性方面,必须根据中学生的知识水平和接受能力量力而行.对中学生的量力性,应该注意以下几点:
(1)对数学严谨性的要求,只能逐步适应,中学生在由低年级到高年级的学习过程中逐步达到.开始学习时往往都是不够严谨的,理解上依赖于直观,解题中依赖于模仿.例如,在小学和初中的数学教材中渗透了集合与对应的思想,但直到高中阶段才作初步的研究,进入理性认识阶段,才能逐步达到严谨的要求.因此,在教学中必须顺应学生认识的发展规律,要求恰当,量力而行.要有计划、有步骤地逐步提高要求,才能达到逐步理解和掌握教学严谨性的要求.
(2)对数学严谨性的认识具有相对性.由于数学的严谨性是相对的,人类认识数学的严谨性又经历了相当长期的过程.而且,中学生的学习本身也是一种认识活动,学习数学就是对人类经过漫长历史认识所获得的成果进行认识,这一认识过程不必要也不可能重复历史,而是在教师的指导下,遵循由低级到高级、由简单到复杂、由浅入深、逐步深入的一般认识规律进行的.再加上中学的数学课时和学生原有的基础知识与能力都有限,因此,中学生只可能认识数学的最基本的内容和方法,相应地,对数学严谨性的认识也只可能是基本的、相对的和初步的.
(3)中学生智力发展的可塑性很大.中学阶段正是青少年智力迅速发展的时期,中学生接受知识的能力既有局限,可塑性也很大,应该充分估计到他们认识上的潜力.在教学中应恰当地诱发他们的积极性,发挥他们的潜能,促进他们的思维发展.
3.严谨性与量力性相结合
数学科学是严谨的,中学生认识数学科学又要受量力性原则的制约,因此,在数学教学中,既要体现数学科学的本色,又要符合学生的实际,这就是严谨性与量力性相结合的原则对数学教学的总要求.这条原则的实质就是数学教学要兼顾严谨性与量力性这两方面的要求,一方面对数学教学的各个阶段要提出恰当而又明确的目的任务,另一方面要循序渐近地培养学生的逻辑思维能力.
在数学教学中,主要是通过下列的各项要求来贯彻严谨性与量力性相结合的原则的.
(1)教学要求应恰当、明确.这就是说,根据严谨性与量力性相结合的原则,妥善处理好科学数学体系与作为中学教育科目的数学体系之间的关系.
(2)教学中要逻辑严谨,思路清晰,语言准确.这就是说,在讲解数学知识时,要有意识地渗透形式逻辑方面的知识,注意培养逻辑思维,学会推理论证.数学中的每一个名词、术语、公式、法则都有精确的涵义,学生能否确切地理解它们的涵义是能否保证数学教学的科学性的重要标志之一,而学生理解的程度如何又常常反映在他们的语言表达之中.因此,应该要求学生掌握精确的数学语言.
为了培养学生语言精确,教师在数学语言上应有较高的素养.新教师在语言上要克服两种倾向:一是滥用学生还接受不了的语言和符号.例如对初一学生讲“每一个概念的定义中包含的判定性质是充分必要的”,并用双箭头符号表示.二是把日常流行而又不太准确的习惯语言带到教学中.如在讲授分式的约分时,常说:“约去上面的和下面的公因式.”这些话容易引起学生的误解,以致出现下面的错误:
因此,数学教师的语言应该既简练、又精确,力争达到规范化的要求.要防止随意制作定义,乱下判断的现象在教学中出现,不能为了通俗易懂,就用含义不十分确切的生活用语来代替数学术语.
(3)教学中注意由浅入深、由易到难、由已知到未知、由具体到抽象、由特殊到一般地讲解数学知识,要善于激发学生的求知欲,但所涉及的问题不宜太难,不能让学生望而生畏,这样才能取得好的教学效果.
总之,在强调严谨性时,不可忽视学生的可接受性;在强调量力性时,又不可忽视内容的科学性.只有将两者有机地结合起来,才能提高教学质量.
二.抽象与具体相结合的原则
1.数学的抽象性
一切科学都具有抽象性,但是数学是对客观对象的空间形式和数量关系这一特性的抽象.这一特性是事物最一般的也是最本质的特性之一,因而,数学的抽象需要舍弃事物的其它一切特性,达到很高的抽象程度.
数学的抽象性还表现为高度的概括性和应用的广泛性.概括,就是把从部分对象抽象出来的某一属性,推广到同类对象中去的思维过程.例如,从解某类习题的过程中抽象出来的某一解题方法推广到解同类习题中去.抽象和概括是互相联系、不可分离的,数学的抽象程度越高,其概括性也越强,应用范围也越广.
数学的抽象性还表现为广泛而系统地使用了数学符号,具有词语、词义、符号三位一体的特性,这是其它学科所无法比拟的.例如“平行”这个词,其词义是表示空间直线与直线、直线与平面、平面与平面的一种特定位置关系,有专门符号“//”表示,并可用具体图形表示.
数学的抽象是一个逐级抽象、逐次提高,抽象再抽象的过程.数学教学中充分注意到这个特点,就能有效地培养学生的抽象概括能力.
2.学生抽象思维的局限性
中学生正处于形象思维、经验型抽象思维的水平,到了高中才逐步向理论型抽象思维过渡.由于受年龄、理解问题的能力、认识问题的方位等特点的影响,他们的抽象思维具有一定的局限性.其具体表现为:过分地依赖于具体素材,即从其中可以抽象出所学概念和结论的事例;具体与抽象相割裂,对抽象理论的理解与掌握有片面性、局限性,不能将抽象理论应用到具体问题中去;对抽象的数学对象间的关系不易掌握等方面.
3.抽象与具体相结合
数学理论的抽象性与中学生抽象思维的局限性是中学数学教学中的一对矛盾.如何处理好这对矛盾的关系,关键在于正确理解认识具体与抽象的基本关系——具体是抽象的基础,抽象又以具体为归宿,且有待于上升到高一级的抽象.
(1)从具体到抽象,培养和发展学生的抽象思维能力和创新意识.从具体到抽象在认识上是一个飞跃,是感性上升到理性的一个阶段.在中学数学教学中,应该注意从实例引入,通过实物(包括教具)直观、图象直观或语言直观,形成直观形象,提供感性材料,这是促进和发展学生抽象思维能力的有效途径,例如,通过温度的升降,货物的进出口等实例,引进意义相反的量;通过观察教室里墙面与墙面的交线和墙面与地面的交线之间的关系,引进异面直线垂直的概念等等.应注意从特例引入,讲解一般性的规律.例如,一元二次方程的解法,一般先学习x2=a型,后学习(x+a)2=b型,再学习ax2+bx+c=0型,这样学生比较容易接受.数形结合的方法可以作为直观化的一种重要手段,有利于学生分析、发现和理解.
在中学数学教学中,为了培养和发展学生的抽象思维能力,教师的主要任务在于创设具体的数学情境,启发引导学生积极参与教学活动,防止包办代替.
(2)从抽象到具体,形成技能和进一步培养学生的分析问题、解决问题的能力.从抽象到具体是认识的又一个阶段,它是在从具体的感性认识上升到抽象的理性认识的基础上的又一次飞跃,它属于整个认识过程的更重要的阶段,也就是应用数学理论去初步解决问题,使理性认识具体化的新阶段.
从抽象到具体,是让学生在掌握抽象的数学理论的基础上,用来解决具体的实际问题,并为进一步的从具体到抽象做好准备.解答数学题的过程,主要是抽象的数学理论的运用过程,是形成数学的相关技能的过程,同时,也是进一步培养和发展观察能力和分析、综合等逻辑思维能力的过程;在解答难度较大的数学题时,除了运用抽象理论外,还可能学到一些新的数学思想和方法,对于培养学生的创造性思维能力也有一定的作用.
抽象与具体将结合,是为了使学生对抽象的理论理解得正确、认识得深刻.具体、直观仅仅是手段,而培养抽象思维能力才是根本的目的.因此,只有不断地实施具体——抽象——具体,循环往复的过程,才能不断将学习向纵深发展,使认识逐步提高和深化.
三.理论与实践相结合的原则
1.数学理论与实践的辩证统一
数学理论的抽象性、严谨性都有实践基础,数学理论又具有广泛的应用性.这说明了数学理论既来自于实践,又反过来指导实践,在实践中接受检验和发展.这就是数学理论与实践的辩证统一.
数学理论来源于实践.通过把实践中多种多样的客观事物、现象,根据需要经过分析、综合,归纳出简单而又具有普遍性的道理,从而形成抽象形式的理论,这就是“由繁到简”的认识过程.例如,二次函数y=ax2就是将许多实际的数量关系抽象概括而来的,形成这一数学模型的抽象理论后,它就具有更大的普遍性.对其中的字母赋予不同的含义,就可以表示不同的数量关系,比如自由落体运动公式S=gt2、能量公式E=mv2、圆面积公式S=πr2等等.
正是由于数学理论的精而简和普遍性,才使得它能用来“以简驭繁”,指导实践,应用广泛地去解决问题,同时在解决问题的实践中检验理论、发展理论.
2.中学生学习数学的实际
中学生学习数学的过程,是一种特殊的认识与实践的过程.这就是在教师的指导下,以课堂教学形式为主、以学习间接知识为主的学习过程.
中学生学习的数学理论知识,是经过前人若干世纪的实践锤炼、整理而形成的.由于课堂教学时间有限,对中学数学中的基础知识,不可能也不必要都从实际开始,更不可能事事都让学生去发现.但是应该尽量让学生了解知识的实际背景,来龙去脉,参与知识的形成过程,从而逐步树立正确的数学观.
将生产实际、生活实际问题抽象出明确的数学问题,从而建立起清晰的数学模型,对中学生来说,是十分困难的问题.这也是造成许多学生害怕学数学,进而不愿学数学的重要原因.
中学生由于对数学原理不理解或理解不深刻,不善于具体分析,往往停留在死记硬背、生搬硬套的水平上,对数学问题中的数量关系往往分析不清楚,因此,在应用理论解决实际问题中,很难发挥理论的指导作用.
3.理论与实践相结合
理论与实践相结合,既是认识论与方法论的基本原则,又是教学论与学习论的基本原则.应用这一原则进行教学时,应该注意以下几方面:
(1)注重中学数学与实际的联系.在教学中,教师必须从实际出发,从学生熟知的生活、生产实际出发,创设适当的数学情境,逐步教会学生提出数学问题、解决数学问题,逐步达到数学知识与实践的统一.
(2)大力提高理论水平,强化理论的指导作用.理论联系实际的中心环节是深刻理解理论、发挥理论的指导作用.只有加深知识理解,提高中学数学教学的理论水平,才能牢固掌握有关的数学知识,使之应用到实践中去.应试教育的影响之大,一个重要的原因就是由于理论水平不高,缺乏理论指导,只讲算法不讲算理;不注重理解和系统掌握,满足于记忆加模仿;不注重科学的“通法”,追求所谓解题技巧等等.
(3)掌握好理论与实践相结合的度.在中学数学教学中,如何创设数学情境,使之与要学习的数学知识密切联系,从而有利于培养学生提出问题的能力;学生应当掌握哪些典型实际问题,根据数学情境提出数学问题应该达到什么程度与要求,根据数学建模的思想方法,通过从实际问题抽象出数学问题的训练,如何有计划地培养学生的抽象能力、分析与综合能力、类比能力等各种能力,进而建立数学模型,解决数学问题,从而解决实际问题,都需要有计划、经常化,全面地进行考虑.
四.巩固与发展相结合的原则
巩固与发展相结合,是科学的教学原则之一,它是由中学数学的课程目标、教学特点与规律所决定的,是受人的记忆发展的心理规律所制约的.巩固是为了发展知识,而发展了的知识反过来又可以促进知识的牢固掌握.
1.巩固所学的数学知识
知识的掌握包括感知、领会、巩固与应用四个有联系的层次和过程.感知是由不知到知,领会是由浅知到深知,巩固是由遗忘到保持,应用是由认识到行动的过程.掌握知识的目的在于应用,但如果所学的知识得不够巩固,应用也就成了空话.要巩固所学的知识,关键在于记忆,只有提高记忆力,才能牢固掌握数学基础知识和基本技能.
(1)理解是记忆的基础.数学知识只有在被深刻理解的基础上才能被牢固地记忆.在教学中,加强基础知识教学,从多方面揭示数学事实、数学概念和原理的本质,建立一定的逻辑体系,使学生深刻理解,这是增强记忆、巩固知识的有效办法;而善于引导学生理解事物间的联系,充分利用已有知识和经验,使新联系在已有联系的基础上建立,把新知识纳入相应的知识系统,不断充实和完善认知结构,也是使学生深入理解、牢固记忆的好办法.
(2)形象识记与逻辑识记有机结合.在教学中,充分揭示数学知识和客观实际的联系,新旧知识的关系和联系,各单元之间的内在联系,适当借助直观化手段,把理论知识与实际结合起来,有利于达到巩固知识的目的.因此,对定理、公式、法则的讲解,除了注意逻辑推理外,还应该注意采用适当的直观手段,比如实物、模型、图表、图解、图示等等,来说明其意义,帮助学生在头脑中形成直观的形象,从而促进记忆.
(3)通过归纳、类比,引起联想促进记忆.对于性质相近、形状相似的同类事物可以引起类似联想.对于具有相反特点的事物引起的对比联想,当矛盾的一方出现时,可以引起对矛盾的另一方的联想,从而提高记忆的效果.还可以从事物的因果关系、从属关系上进行关系联想.例如数的概念的扩充,其知识内容一环套一环,在逻辑上是因果关系,从属关系.理解这些关系,有利于记忆.
(4)识记与再现相结合,加速与巩固记忆.在教学中要让学生在学习中掌握遗忘规律,合理地组织复习,设法促进知识的再现.同时要注意复习方式的多样化,防止单调的机械重复,以提高巩固知识的效率.
2.注重发展学生思维
数学教学的目的不仅要使学生牢固地掌握系统的知识和技能,更重要的是培养学生的创新思维和实践能力.只有让学生的思维得到发展,才能更深刻地理解和巩固所学的知识,从而提高学生的实践能力.“数学是人类思维的体操”,说明数学教学必须发展学生的思维,而且有利于发展思维.
(1)在教学中要明确思维的目标与方向.学生的思维从问题开始,没有挑战性的问题,不能激发起学生的思维.因此,在教学中应该提出有启发性的问题,创设问题情境,使学生明确思维的方向,从而激发学习的兴趣,促进思维的发展,提出数学问题,进而解决数学问题,并能应用于实际中去,使学生的创新意识和实践能力都得到培养.
有一位教师在讲三角形的分类时,给出了如下三幅图

让学生根据图形中显然出的三角形的部分判别三角形的类型.学生在判别第一幅图中的三角形的类型时,产生了很大的争论,最后在教师的指导下统一了认识,获得了正确的结果,对学生思维的发展起到了促进的作用.
(2)给学生进行思维加工提供充足的原料.学生的思维过程,就是对输入信息加工的过程,因而,信息就是思维加工的原料.只有原料充足,思维加工才会有效地进行.在中学数学教学中,可供给学生的信息不外乎语言和表象.数学公式、符号等都属于语言信息,图象、模型、教具等属于表现信息.在教学中,只有不断丰富和积累这些数学语言和表象,明确这些思维加工原料的意义,才能促进思维的发展.
(3)要发展抽象思维形式.要发展思维,就要发展思维形式.抽象思维有概念、判断和推理三大形式,概念是基础,判断是概念的联接,推理是判断的组合.在中学数学教学中,首先要让学生掌握一系列的数学概念,才能在此基础上进行正确的判断,并进行正确的推理.只有这样,才能在不断掌握数学基础知识和一定的数学技能的过程中,发展学生的思维.
(4)要教会学生掌握思维的方法.中学数学中的思维方法一般有:分析与综合、比较与归类、抽象与概括、归纳与演绎、系统化与具体化、一般化与特殊化等.这些思维方法是互相联系、交织在一起的,在学习和运用的实践中,必须综合应用,才能正常地思维,才能理解和巩固所学知识,在实践中发现问题、解决问题.
3.巩固与发展相结合
巩固与发展相结合,就是要把牢固地掌握数学基础知识、基本技能和发展思维、提高能力结合起来.巩固知识的关键在于知识系统化和应用,发展思维的关键在于逻辑化和训练.因此,在教学中应该有效地组织复习,温故而知新,举一反三,触类旁通,使学生的知识系统化、不断深化,思维得到训练和发展,能力得到提高.
为了在教学中能够很好地贯彻巩固与发展相结合的原则,应该注意以下两方面:
(1)认真研究对学生所学知识、技能和方法进行复习巩固的工作.要全面系统地复习基础知识,让学生领会基本的数学思想和方法.适时地进行单元复习、总复习,使所学的知识系统化,形成有机的知识体系.领会了知识体系中数学思想方法,就不仅能举一反三、灵活应用,达到巩固和深化的目的,而且能够将这些知识系统逐渐内化,由量变到质变,从而引起和促进学生思维整体结构的发展,提高学习和应用数学的能力.
(2)围绕教学目的,着眼发展思维和培养能力,精心选配复习题.选配复习题不仅要具有概念性、基础性、典型性、针对性、综合性,而且还要有启发性、思考性、灵活性和创造性等特点.例如,利用成套题复习,有利于调动各种手段,贯通各种方法,提高学生应用数学知识的能力;利用一题多解的习题复习,有利于发展学生的求异思维,提高解题能力;利用变式题进行复习,有利于培养学生思维的灵活性和创造性;利用改错题进行复习,有利于培养学生思维的批判性,提高科学的辨别能力;利用引申题进行复习,可以培养学生思维的灵活性和深刻性,提高学生的数学能力.

阅读全文

与初中数学教育应该注意什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050