Ⅰ 高中文理科数学教材有什么不同
1、内容上的区别
高中理科数学比文科数学的内容多,多的部分包括:《空间向量与立体几何》、《数学归纳法》、《计数原理》、《随机变量及其分布》、《不等式选讲》等。
2、难易程度上的区别
高中文科的数学学习会讲授的比较浅,只要求掌握基本的高中数学知识即可;
高中理科的数学学习会讲授的比较深入,除了要求理科生掌握基本的高中数学知识以外,还需要理科生掌握基础知识的扩展。
(1)数学必修3一5多少钱一本扩展阅读
高中数学教材大纲(人教版)
第一部分前言
1、课程性质
2、课程的基本理念
3、课程设计思路
第二部分课程目标
第三部分内容标准
1、必修课程:数学1、数学2、数学3、数学4、数学5
2、选修课程:系列1;系列2说明;系列1、系列2、系列3;系列4说明;系列3、系列4
3、数学探究、数学建模、数学文化数学探究、数学建模、数学文化
第四部分实施建议
1、教学建议
2、评价建议
3、教材编写建议
Ⅱ 高中数学分别要学必修共多少本如何设置的 比如高一,二,三分别上的必修几
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
(2)数学必修3一5多少钱一本扩展阅读
必修1知识点:
1、集合(约4课时)
1)集合的含义与表示
2)集合间的基本关系
3)集合的基本运算
2、函数概念与基本初等函数(约32课时)
1)函数
①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质。
2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
7)实习作业
Ⅲ 高中人教版数学 必修有几本高一、高二都上哪几本
有4本,上必修1,2,4,5。
主要信息:
《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
Ⅳ 高一课本分别有几本
人教版高中教材新课标必修课本9科共32本,各科数目不同。
具体如下:
语文:必修5本;数学:必修5本;英语:必须5本。
物理:必修2本;化学:必修2本;生物:必修3本。
政治:必修4本;历史:必修3本;地理:必修3本。
数学:A版有13本和B版有14本数学:
一、A版数学:1-1(选修)A版数学、1- 2(选修)A版数学、2-1(选修)A版数学、2- 2(选修)A版数学、2- 3(选修)A版数学、3- 1(选修)A版数学史选讲数学、3- 4(选修)A版对称与群数学、4- 1(选修)A版几何证明选讲数学等。
二、B版数学:1- 1(选修)B版数学、1- 2(选修)B版数学、2- 1(选修)B版数学、2- 2(选修)B版数学、2- 3(选修)B版数学、3- 1(选修)B版对称与群数学、3- 4(选修)B版数学史选讲 数学、4- 1(选修)B版几何证明选讲数学、4- 2(选修)B版矩阵与变换数学等。
Ⅳ 高二数学课本学必修几
不同学校不一样。
高一数学必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和选修。必修1主要是集合与函数;必修2主要是空间几何体,点与直线平面的关系,直线与方程,圆与方程;必修4主要是三角函数和平面向量;必修5主要是解三角形,数列和不等式。
高中数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。
高考范围的书:
高考范围为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,而选修4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲),三选二,共10本。
就教学进度来说,各个学校可根据实际情况安排。就我们学校来说,先学习高考考察的主干知识,再学习零散知识,速度由慢到快,深度有难到易,难度自始至终与广东高考理科数学难度相当。
高一第一学期刚开学不讲上述11本书的内容,而是对初、高中的知识进行衔接,继续深入探讨二次函数的性质和应用,韦达定理,二次根式,因式分解等。接着进入必修1的学习,然后是选修2-2的导数部分。本学期学习的核心是函数与导数。
高一第二学期学习必修5的数列部分,必修4,核心是数列、三角与平面向量。
高二第一学期先学习选修4-1,再学习必修2的立体几何部分,然后是必修2和选修2-1的解析几何部分的直线、圆和椭圆,核心是平面几何、立体几何和解析几何。
高二第二学期继续必修2和选修2-1的解析几何部分的双曲线、抛物线的学习,接着是隶属与解析几何的选修4-4,再学必修5的线形规划部分,再学选修2-3的其余部分(包括排列组合与二项式定理、概率与统计)。
接着完成选修2-2的其余部分(包括定积分、数学归纳法、复数),选修2-1其余部分(包括常见逻辑用语、空间向量),必修5和选修4-5的不等式部分,必修3(算法)等零散知识的学习,结束高中理科数学课程。本学期的主干是解析几何、概率和统计、排列组合二项式定理。
Ⅵ 高中数学必修1~5分别讲什么内容,详细的
亲,这个要看你用的什么教材的啦~
搜个目录就可以了呀~
比如下面是人教版的:
【必修一】
第一章集合与函数概念
1.1集合
1.2函数及其表示
1.3函数的基本性质
第二章基本初等函数(Ⅰ)
2.1指数函数
2.2对数函数
2.3幂函数
第三章函数的应用
3.1函数与方程
3.2函数模型及其应用
【必修二】
第一章空间几何体
1.1空间几何体的结构
1.2 空间几何体的三视图和直观图
1.3 空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
2.1空间点、直线、平面之间的位置关系
2.2直线、平面平行的判定及其性质
2.3直线、平面垂直的判定及其性质
第三章直线与方程
3.1直线的倾斜角与斜率
3.2直线的方程
3.3直线的交点坐标与距离公式
第四章圆与方程
4.1圆的方程
4.2直线、圆的位置关系
4.3空间直角坐标系
【必修三】
第一章算法初步
1.1算法与程序框图
1.2基本算法语句
1.3算法案例
第二章统计
2.1随机抽样
2.2用样本估计总体
2.3变量间的相关关系
第三章概率
3.1随机事件的概率
3.2古典概型
3.3几何概型
【必修四】
第一章三角函数
1.1任意角和弧度制
1.2任意角的三角函数
1.3三角函数的诱导公式
1.4三角函数的图象和性质
1.5函数的图象
1.6三角函数模型的简单应用
第二章平面向量
2.1平面向量的实际背景及基本概念
2.2平面向量的线性运算
2.3平面向量的基本定理及坐标表示
2.4平面向量的数量积
2.5平面向量应用举例
第三章三角恒等变换
3.1两角和与差的正弦、余弦和正切公式
3.2简单的三角恒等变换
【必修五】
第一章解三角形
1.1正弦定理和余弦定理
1.2应用举例
第二章数列
2.1数列的概念与简单表示法
2.2等差数列
2.3等差数列的前n项和
2.4等比数列
2.5等比数列的前n项和
第三章不等式
3.1不等关系与不等式
3.2一元二次不等式及其解法
3.3二元一次不等式(组)与简单的线性规划问题
3.4基本不等式
祝你好运O(∩_∩)O~