1. 什么是数学的思维能力呢该如何培养孩子的数学思维
数学思维也就是大家通常所说的数学思维能力,即可以用数学的见解去独立思考和处理问题的能力。数学思维例如转换与划入,从一般到独特、特殊到一般,函数公式/投射的观念,这些。一般来说数学能力强的人,基本上反映在二种能力上,一是联想力,二是数据敏感性。4岁小孩子可以逐渐塑造数学思维,有很多培养孩子数学思维的组织,朋友的小孩在学培飞逻辑思维数学, 合适小年龄层小孩。
培养孩子的数学思维的方法:要营造小孩的数学思维逻辑,爸爸妈妈最先要营造小孩的判断力。为了更好地见到问题是怎样产生的,她们务必观查问题的种类并剖析交换机。领悟不但能协助小孩集中化精神,还能提升逻辑思维能力。
2. 初中数学思维与小学数学思维有哪些不同
小学数学着重计算能力的培养,初中数学开始有一些证明题和简化计算题,这个需要对公式定理的理解和运用能力,还需要逻辑推理能力。初中数学其实不难的,重要的是对基本定理的理解。
3. 如何培养初中数学思维
一、在课堂中培养学生的数学思维
数学思维的培养不是靠说,而且靠我们在平时教学生活中的做。也就是说,数学思维是“只可意会而不可言传” 的,需要学生在学习中一点一点地“悟”出来. 虽说数学思维的培养需要学生自行整理学习中的感触,但是,我们也要对学生进行合适的引导。首先,让学生变被动为主动。传统的应试教育中,课堂往往是压抑的,教师在讲台上讲,学生在下面听,课堂的主导是教师。 但是,现在我们就要让学生成为课堂的主导,让课堂的气氛“活”起来. 被动学习与主动学习的区别非常大。被动学习虽说能在短期内提高学生的成绩,但是学生的兴 趣与参与性已经被磨光了,学生很可能会对数学产生厌恶。主动学习则完全不一样,学生主动参与到学习中,能够保证学生对数学的长期热情。
二、一题多解,训练学生数学思维
每次讲完一个解法后,我们可以引导学生 : “这道题还有别的解法了吗?”引导学生一题多解,能训练学生的智力,让学生敢于质疑,还能调动学生的积极性,培养学生的数学思维。
三、在作业中培养学生的数学思维
对于学生来说,课堂上短短的四十分钟是远远不够的,因为思维习惯的形成不是一天两天的事情。因此,教师在给学生布置作业时,在夯实基础的同时也要考虑拓展学生的思路,在作业中培养学生的数学思维。
教师可以布置一些推导公式之类的作业,让学生能在拓展思路的同时掌握知识;每单元结束的时候,让学生画思维导图,让学生系统的对学习过的单元做一次复习; 最后,要定时的进行数学兴趣小组的活动,激发学生的头脑风暴,让学生真正地在潜移默化中形成数学思维.
作业是检验学生对知识的掌握程度的一个重要手段,也是学生开拓思维的一个重要方法. 教师要利用好作业,让学生学会学习,学会逻辑推理,学会建立数学思维。
4. 初中数学八种思维方法
符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想方法。在实际教学中,符号化的数学思想方法经常使用。
类比思想方法无论是学习新知识,还是利用已有知识解决新问题,如果能够把新知识和新问题与已有的相类似的知识进行类比,进而找到解决问题的方法,这样就实现了知识和方法的正迁移。
5. 初中数学思维方法
学数学,基本功最重要,就如同你想练习武功,最早就是从扎马步开始,基础越扎实,可能达到的高度就越高;也如同盖楼一样,根基扎的深,扎实,楼才可能稳固。而数学思想,也是这基本功中的一部分。做题不如总结规律,总结规律的意义就是在总结数学思想,我特意将初中常见的17中思维方式总结出来,希望对大家有帮助!
初中数学思维方法
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
初中数学学什么?
主要考查具体的“数”与“形”,以及抽象的“函数”
“数”——实数、代数式、代数方程
“形”——角与线、三角形、四边形、多边形、圆
“函数”——正反比例函数、一次函数、二次函数
这三者之间,知识相连,数形互通
环环相扣,无懈可击
6. 初中数学中的数学思想
初中数学中的数学思想是我为大家带来的论文范文,欢迎阅读。
摘 要:数学思想及数学方法是数学课程的精华,同时也是将理论知识转变为应用能力的途径。
当前,初中阶段的数学课程所包含的思想及方法主要有:整体思想、归纳思想、类比思想、辩证思想等。
教师想要帮助学生掌握学习方法,提高数学素养,就应重点培养学生的数学思想。
关键词:数学思想 初中数学 方法体系
数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。
目前,在初中阶段,主要数学思想方法有:转化思想、方程思想、分类讨论的思想、数形结合的思想等。
一、转化思想
所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。
我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。
数学问题的解决过程就是一系列转化的过程。
转化是化繁为简、化难为易、化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析、解决问题的能力有着积极的促进作用。
在学习《平行四边形和梯形的认识》时,对于梯形的认识和学习可引导学生通过作适当的辅助线,比如做梯形的高、平移一条腰或者平移一条对角线把梯形分割或补成三角形和平行四边形来解决问题。
从而把生疏的、新的问题转化为熟悉的、旧的问题,把困难的问题转化为容易的问题。
二、方程思想
所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。
教材中大量地出现这种思想方法,如列方程解应用题、求函数解析式、利用根的判别式、根与系数关系、求字母系数的值等。
方程建模的思想对人的教育价值体现在两个方面:一个是建模,另一个是化归。
学生学习方程的意义在于:一是学习在生活中从错综复杂的事情中,将最本质的东西抽象出来,这个过程是非常难的,很有训练的价值;二是在运算中遵循最佳的途径,将复杂问题简单化,这种优化思想对于思维习惯的影响是深远的。
教学时,可有意识地引导学生发现等量关系从而建立方程。
如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把它们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉地去找三个等量关系建立方程组。
在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。
三、分类讨论思想
“分类讨论”是一种逻辑方法,是中学数学中一个极其重要的数学思想方法,同时也是一种重要的解题策略,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。
近年来,在各地中考试题中涉及“分类讨论”的问题十分常见,因为这类试题不仅考查我们的数学基本知识与方法,而且考查了我们思维的深刻性.在解决此类问题时,因考虑不周全导致失分的较多,究其原因主要是在平时的学习中,尤其是在中考复习时,对“分类讨论”的数学思想渗透不够.在数学中,当问题所给的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,得到每一类的结论,最后综合各类的结果得到整个问题的解答,这种“化整为零、各个击破、再集零为整”的方法,叫做分类讨论法。
1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的'结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
由于学生的思维的全面性还不完善,缺乏实际的经验,这样呢,在分类讨论问题时,学生不知道从哪个方面、哪个角度去分析、去讨论,才能有利于问题的解决,这是教学过程中的一个难点,所以在教学过程中,培养学生的分类思想显得特别重要,即结合具体的解题过程,适当向学生介绍一些必要的分类知识,引导他们去发现、去尝试、去总结,这对他们学习知识、研究问题、提高技能是大有帮助的。
四、数形结合的思想
“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要思想方法,它是指把代数的精确刻画与几何的形象直观相统一,将抽象思维与形象思维相结合的一种方法。
数形结合的思想贯穿于初中数学教学的始终。
数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型。
(2)建立几何模型解决有关方程和函数的问题。
(3)与函数有关的代数、几何综合性问题。
(4)以图象形式呈现信息的应用性问题。
采用数形结合思想解决问题的关键是找准数与形的契合点。
如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。
数形结合是数学中一种重要的思想方法,它将抽象的数学语言与直观的图形结合起来,使代数问题几何化或使几何问题代数化,为问题的解决提供了简洁明快的途径。
在实践中我们发现,学生在解决问题的过程中经常会面对问题时无从下手,这时如果学生能灵活运用数形结合的方法,往往能很快找到解决问题的窍门。
总之,在初中数学教学中,渗透数学思想方法,可以克服就题论题、死套模式。
数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析、解决问题的能力,从而使思维品质和能力有所提高。
提高学生的数学素质,必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。
参考文献:
[1]陈振宣.《中学数学思想方法》.上海科技教育出版社
[2]郑敏信.《数学方法论》.广西教育出版社