导航:首页 > 数字科学 > 数学有哪里美

数学有哪里美

发布时间:2023-06-12 08:41:33

⑴ 为什么说数学是美妙的

长期以来,一个令人困惑的现象是:一些同学视数学如畏途,兴趣淡漠,导致数学成绩普遍低于其他学科。这使一些教师、家长乃至专家、学者大伤脑筋!“兴趣是最好的老师。”对任何事物,只有有了兴趣,才能产生学习钻研的动机。兴趣是打开科学大门的钥匙。对数学不感兴趣的根本原因是没有体会到蕴含于数学之中的奇趣和美妙。一个美学家说:“美,只要人感受到它,它就存在,不被人感受到,它就不存在。”对数学的认识也是这样。有人说:“数学真枯燥,十个数字来回转,加、减、乘、除反复用,真乏味!”有人却说:“数学真美好,十个数字颠来倒,变化无穷最奇妙!”认为枯燥,是对数学的误解;感到了兴趣,才能体会到数学的奥妙。其实,数学确实是个最富有魅力的学科。它所蕴含的美妙和奇趣,是其他任何学科都不能相比的。尽管语文的优美词语能令人陶醉,历史的悲壮故事能使人振奋,然而,数学的逻辑力量却可以使任何金刚大汉为之折服,数学的浓厚趣味能使任何年龄的人们为之倾倒!茫茫宇宙,浩浩江河,哪一种事物能脱离数和形而存在?是数、形的有机结合,才有这奇奇妙妙千姿百态的大千世界。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝!数学的趣,醇浓如酒,令人神魂颠倒。因为它美,才更有趣;因为它有趣,才更显得美。美和趣的和谐结合,便出现了种种奇妙。这也许正是历史上许许多多的科学家、艺术家,同时也钟情于数学的原因吧!数学以它美的形象,趣的魅力,吸引着古往今来千千万万痴迷的追求者。

一、数学的趣味美

数学是思维的体操。思维触角的每一次延伸,都开辟了一个新的天地。数学的趣味美,体现于它奇妙无穷的变幻,而这种变幻是其他学科望尘莫及的。揭开了隐藏于数学迷宫的奇异数、对称数、完全数、魔术数的面纱,令人惊诧;观看了数字波涛、数字漩涡令人感叹!一个个数字,非但毫不枯燥,却生机勃勃,鲜活亮丽!根据法则、规律,运用严密的逻辑推理演化出的各种神机妙算、数学游戏,是数学趣味性的集中体现,显示了数学思维的出神入化!各种变化多端的奇妙图形,赏心悦目;各种扑朔迷离的符形数谜,牵魂系梦;图形式题的巧解妙算,启人心扉,令人赞叹!魔幻迷题,运用科学思维,“弹子会告密”、“卡片能说话”,能知你姓氏,知你出生年月,甚至能窥见你脑中所想,心中所思,真是奇趣玄妙,鬼斧神工。面对这样一些饶有兴味的问题,怎能说数学枯燥乏味呢?

二、数学的形象美

黑格尔说:“美只能在形象中出现。”谈到形象美,一些人便联想到文学、艺术,如影视、雕塑、绘画等等。似乎数学中的数与形只是抽象的孪生兄弟。其实不然。数学是研究数与形的科学,数形的有机结合,组成了万事万物的绚丽画面。

数字美:阿拉伯数字的本身便有着极美的形象:1字像小棒,2字像小鸭,3字像耳朵,4字像小旗。瞧,多么生动。

符号美:“=”(等于号)两条同样长短的平行线,表达了运算结果的唯一性,体现了数学科学的清晰与精确。

“≈”(约等于号)是等于号的变形,表达了两种量间的联系性,体现了数学科学的模糊与朦胧。

“>”(大于号)、“<”(小于号),一个一端收紧,一个一端张开,形象的表明两量之间的大小关系。

{[()]}(大、中、小括号)形象地表明了内外、先后的区别,体现对称、收放的内涵特征。

线条美:看到“⊥”(垂直线条),我们想起屹立街头的十层高楼,给我们是挺拔感;看到“—”(水平线条),我们想起了无风的湖面,给我们的是沉静感;看到“~”(曲线线条),我们想起了波涛滚滚的河水,给我们的是流动感。几何形体中那些优美的图案更是令人赏心悦目。三角形的稳定性,平行四边形的变态性,圆蕴含的广阔性,都给人以无限遐想。脱式运算的“收网式”变形以及统计图表,则是数与形的完美结合。我国古代的太极图,把平面与立体、静止与旋转,数字与图形,更作了高度的概括!

三、简洁美

数学科学的严谨性,决定它必须精练、准确,因而简洁美是数学的又一特色。

数学的简洁美表现在:

1.定义、规律叙述的高度浓缩性,使它的语言精练到“一字千金”的程度。质数的定义是“只有1和它本身两个约数的数”,若丢掉“只”字,便荒谬绝伦;小数性质中“小数末尾的0”中的“末尾”若说成“后面”,便“失之千里”。此种例证不胜枚举。

2.公式、法则的高度概括性。一道公式可以解无数道题目,一条法则囊括了万千事例。

三角形的面积=底×高÷2。把一切类型的三角形(直角的、钝角的、锐角的;等边的、等腰的、不等边的)都概括无遗。“数位对齐,个位加起,逢十进一”把20以内、万以内、多位数的各种整数相加方法,全部包容了进去。

3.符号语言的广泛适用性。

数学符号是最简洁的文字,表达的内容却极其广泛而丰富,它是数学科学抽象化程度的高度体现,也正是数学美的一个方面。a+b=b+aabc=acb=bca,其中a,b,c可以是任何整数、小数或分数。所以,这些用符号表达的算式,既节省了大量文字,又反映了普遍规律,简洁,明了,易记。充分体现了数学语言干练、简洁的特有美感。

四、对称美

对称是美学的基本法则之一,数学中众多的轴对称、中心对称图形,幻方、数阵以及等量关系都赋予了平衡、协调的对称美。略举几例:

算式:

2∶3=4∶6

X+5=17-9

数阵:

数学概念竟然也是一分为二的成对出现的:“整—分,奇—偶,和—差,曲—直,方—圆,分解—组合,平行—交叉,正比例—反比例,显得稳定、和谐、协调、平衡,真是奇妙动人。图形:数学中蕴含的美的因素是深广博大的。数学之美还不仅于此,它贯穿于数学的方方面面。数学的研究对象是数、形、式,数的美,形的美,式的美,随处可见。它的表现形式,不仅有对称美,还有比例美、和谐美,甚至数学的本身也存在着题目美、解法美和结论美。上述这些只是浮光掠影的点点滴滴,然而,也足见数学的迷人风采了。打开这本书,如同进入一个奇妙世界,呈现眼前的尽是数、形变幻的奇妙景观,一个个“枯燥”的数字活蹦乱跳地为你作精彩表演,一个个“抽象”的概念娓娓动听地向你讲述生动的故事。它揭示了隐藏于深层的数学秘密,展示了数学迷宫的绚丽多彩。数的变幻,形的奇妙,有的令你追根究底,有的令你流连忘返,有的令你惊讶感叹,有的令你拍案叫绝,走进这个奇妙世界,必将如咀嚼一枚橄榄果,品尝到数学的浓浓趣味,感受到数学王国神异奇妙,从而使我们眼界大开。你将惊呼:“哇!数学原来是这么有趣啊!”

⑵ 数学的美体现在生活的哪些方面

数学的美体现在哪些方面
(1)完备之美

没有那一门学科能像数学这样,利用如此多的符号,展现一系列完备且完美的世界。就说数吧,实数集是完备的,任意多的实数随便做加减乘除乘方开方,其结果依然是实数(注意:数学上完备是根据序列的收敛性严格定义的,我这里不是完备的严格说法,但可认为是广义的说法)。引入虚数单位,实数集扩展到复数集,还是任意多的复数,还做那些运算,结果还是复数。

把具体的数抽象成空间中的点,在一定的假设和约定之下,可以得到完备的空间,这些空间可以是一维的,也可以是二维三维甚至多维的。三维之外,你就难以想象,但不能否认其存在。某空间的点、序列依一定的法则进行运算,依然不能离开那个空间,这就是完备性。这种完备性是很奇妙的。你可以把它想象成在一个球体中,不管你如何运动,总是不能钻出球面。

具有完备性的空间,可以带来许多好处。工程中用得最多的空间是Hilbert空间。顺便提一句,Hilbert是个二十世纪最伟大的数学家之一。

另外,数学中的诸多体系,其本身也都是完备的,如欧式几何,这是大家所熟知的,在几个公理的基础上,推演出一系列漂亮的结论,生命力经久不衰,尤其在工程运用中。

(2)对称之美

提到对称的美,大家首先想到的是几何,其实几何只是一方面,是“看得见”的那一方面。实际上,对称性在数学中处处存在。如微积分的基本定理,展现了微分与积分之间的紧密联系,本身具有很强的对称性。如泛函中的对偶算子,不但在运算上具有显着的对称性,在性质上也处处显示出一致性。

(3)简洁之美

数学中有个非常漂亮的公式,那就是欧拉公式。这个式子把数学中几个“伟大的”数给联系到了一块,它们分别是自然对数、圆周率、虚数单位以及1,其中前两个是超越数,是无数个超越数中人类目前仅仅找到的两个,而且这两个对数学影响巨大。我大胆猜想,当下一个超越数被找到的时候,数学将会经历另一场巨大的革命。虚数单位今天看起来没什么特别,但它刚被引进的时候曾受到众多(大)数学家的置疑和反对,最后它终于还是进来了,而数学也开辟了一条康庄大道,那就是复变函数。

勿庸置疑,欧拉公式是简洁而完美的,另一个可以跟它抗衡的式子出现在物理学中,那就是爱因斯坦的质能变换公式。我这种说法可能有点武断,不过我目前只能想到这一点,呵呵。

(4)抽象之美

这一点可能会引起许多人的异议,因为在许多人看来,抽象是不好的,因为离现实太远。可是我不这么认为,数学如果不抽象,便难以发展,虽然很多问题都是从现实引出的。数学建立在符号逻辑的基础之上,即使是解决实际问题,也要把问题抽象出来,用数学符号表示,才可以很好的解决。另一方面,抽象的数学,能带动你在无限的思维空间中遨游,抛开一切杂念,成为一种美好的享受。当然,这有点理想化,但不可否认,这确实是一种美的体验。

⑶ “数学之美”有什么例子

浅谈数学之美


数学美是自然美的客观反映,是科学美的核心。“那里有数学,哪里就有美”,数学美不是什么虚无缥缈、不可捉摸的东西,而是有其确定的客观内容。数学美的内容是丰富的,如数学概念的简单性、统一性,结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等,都是数学美的具体内容。本文主要围绕数学美的三个特征:简洁性、和谐性和奇异性进行阐述。

【关键词】数学,数学美,美学特征

数学美的表现形式是多种多样的,从外在形象上看:她有体系之美、概念之美、公式之美;从思维方式上看:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上看:她有对称之美、和谐之美、奇异之美等。此外,数学还有着完美的符号语言、特有的抽象艺术、严密的逻辑体系、永恒的创新动力等特点。但这些都离不开数学美的三大特征,即:简洁性、和谐性和奇异性。


⑷ 数学是怎样的一种美

数学是一种对称美(很多结论具有对称性)
数学是一种简洁美(用简单的数学公式可以解决一类问题)
数学是一种逻辑美(用严格的证明去解释各种现象)

⑸ 数学的美到底是怎样体现出来的

我觉得数学的美也可以是体会到具体情况下的,他可以体现在一些具体的模型上面,比如说建模的过程也特别的快乐,你可以在一些建模的过程中慢慢的去克服一些自己原来克服不了的困难,这些克服了困难造成的一些好的影响其实是好的

⑹ 数学的简洁美主要体现在什么地方

19世纪大数学家高斯就说过“数学是科学中的皇后”),它具有简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异美(有限美、神秘美等)。美在一个困难问题的简单解答,一个复杂问题的简单答案;美在种种图案、建筑物、衣服式样、家具及装饰等事物的对称性上;美在人们对和谐、有规律的事物的喜爱以及从事物中发现普遍性与统一性的秩序和规律中。 1、美观:数学对象以形式上的对称、和谐、简洁,总给人的观感带来美丽、漂亮的感受。 比如:几何学常常给人们直观的美学形象,美观、匀称、无可非议; 在算术、代数科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 这些公式和法则非常对称与和谐,同样给人以美观感受。 但是外形上的的美观,并不一定是真实和正确的。 比如:sin(A+B)=sinA+sinB是何等的“对称”、“和谐”、“美观”啊!但是它是错误的,就象“”虽然美丽但是有“毒”。 2、美好:数学上的许多东西,只有认识到它的正确性,才能感觉到它的“美好”。 不美丽的例子很多,比如二次方程的求根公式,无论从哪方面看都不对称、不和谐、不美观。但是,当我们真正了解它、运用它,就会感到它的价值,它的美好。这一公式告诉我们许多信息:±表示它有两个根,a≠0、△会显示根的数目和方程的性质…… 3、美妙:美妙的感觉需要培养,美妙的感觉往往来自“意料之外”但在“情理之中”的事物。三角形的高交于一点就是这样;2个圆柱体垂直相截后将截面展开,其截线所对应的曲线竟然是一条正弦曲线,与原来猜想的是一断圆弧大出“意料之外”,经过分析证明的确是正弦曲线,又在“情理之中”,美妙的感觉就油然而生了。 4、完美:数学总是尽量做到完美无缺。这就是数学的最高“品质”和最高的精神“境界”。欧氏几何公理化体系的建立,“1+1”的证明都是追求数学完美的典型例子。

⑺ 数学之美的内容

数学美是自然美的客观反映,是科学美的核心。简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。

作为科学语言的数学,数学具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。

数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。

(7)数学有哪里美扩展阅读:

数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。

德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”

大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。

阅读全文

与数学有哪里美相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050