导航:首页 > 数字科学 > 数学思维与方法是什么

数学思维与方法是什么

发布时间:2023-06-13 01:11:13

Ⅰ 数学八种思维方法

数学的八种思维方法:

一、解答数学题的转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。

二、逆向思维也叫求异思维。它是一种思考的方式,它反过来对共同的事物或观点,似乎已经成为最后的结论。敢于“反其道而行之”,让思维朝着相反的方向发展,从问题的反面深入探索,树立新观念,创造新形象。

三、逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

四、创新思维是指用创新的、新颖的方法解决问题的思维过程。通过这种思维,我们可以突破传统思维的界限,用非常规甚至非常规的方法和视角思考问题,提出不同的解决方案。它可以分为四种类型:差异、探索、优化和否定。

五、类比思维是指根据事物的某些相似性质,将不熟悉、不熟悉的问题与熟悉的问题或其他事物进行比较,从而找出知识的共性,找到其本质的思维方法。

六、对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。

七、、形象思维,主要是指人们在认识世界的过程中,选择事物的表现形式而形成的。它是指用直观的图像表现来解决问题的思维方法。想象是形象思维的高级形式和基本方法。

八、系统思维也叫整体思维。系统思维是指在解决问题时,对具体课题所涉及的知识点进行系统的理解,即先分析判断哪些知识点属于哪些知识点,然后再回忆这类问题的类型和相应的解决办法。

Ⅱ 什么是数学思维如何提高自己的数学思维

数学思维值的就是人们通常所指的数学思维能力。就是能够用数学的观点去思考问题和解决问题的能力,比如转化和化归从一般到特殊,特殊到一般。函数映射的思想等等。许多家长都在问如何提高自己孩子的数学思维能力?因为数学思维能力提高了。。孩子具有更多的思维能力。而且在逻辑思维方面也很强。数学的成绩就可以提高。

想要提高数学思维能力,就要做到以下几点。

第三,生活中常说到要有逻辑思维能力。逻辑思维能力是一种思考的方式,是对一个事物认识过程中介于注意一些概念和判断来推理的思维方式而对事物进行观察,比较,分析,综合,抽象的概括。这种推理的过程就叫做逻辑思维。在生活中我们经常可以去分析一些问题,来提高自己的逻辑思维能力,也就是数学思维能力。因为分析问题从开始到最后你对问题有了一定的认知理解。慢慢的就会有自己的逻辑思维能力。

Ⅲ 数学八种思维方法是什么

数学八种思维方法是代数思想,数形结合,转化思想,对应思想方法,假设思想方法,比较思想方法,符号化思想方法,极限思想方法。解答数学题的转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单,更清晰。

数学不同于语文,英语等语言性学科,它对思维能力要求较大,只要掌握了同一类型题目的解题思维,不管题型再如何变化,我们都可以快速解答,数学源于生活又作用于生活,课本上的数学知识其实都可以在实际生活中找到原形,但需要你通过抽象,简化等方式转化成数学语言,因此,在学习数学时要多联系生活实际理解本质含义。

数学八种思维方法的内容

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式,敢于反其道而思之,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

逻辑思维是人们在认识过程中借助于概念,判断,推理等思维形式对事物进行观察,比较分析,综合,抽象,概括,判断,推理的思维过程,逻辑思维,在解决逻辑推理问题时使用广泛,创新思维是指以新颖独创的方法解决问题的思维过程,

通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法,视角去思考问题,提得出与众不同的解决方案,可分为差异性,探索式,优化式及否定性四种。

Ⅳ 数学思维十种思维方式是什么

1、公式法。

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

2、对照法。

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例:三个连续自然数的和是18,则这三个自然数从小到大分别是多少。

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

3、比较法。

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

1、找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

2、找联系与区别,这是比较的实质。

3、必须在同一种关系下(同-种标准)进行比较,这是“比较”的基本条件。

4、要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

5、因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生。

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路:每人多种7-5=2(棵), 那么,全班就多种了75+15=90(棵),全班人数为90+2=45(人)。

4、分类法。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要故到大类之中的各小类不重复、不遗漏、不交叉。

例:自然数按约数的个数来分,可分成几类。

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1; (2)有两个约数的,也叫质数,有无数个; (3)有三个约数的,也叫合数,也有无数个。

5、分析法。

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,-直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件。

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

6、综合法。

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于己知条件较少,数量关系比较简单的数学题。

例:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路: 11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有: 3和19, 5和17。它们的差都是小于30的合数吗?和是44的两个质数有: 3和41, 7和37, 13和31。它们的差是小于30的合数吗?这就是综合法的思路。

7、方程法。

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待。

参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

例:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。

例:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克。

这两题用方程解就比较容易。

8、参数法。

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

例: 一项工作,甲多带带做要4天完成,乙多带带做要5天完成。两人合做要多少天完成。

其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、.....都可以,只不过看作“1”运算最方便。

9、排除法。

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

例:为什么说除2外,所有质数都是奇数。

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。 一个数的约数除了1和它本身外,还有别的约数(约数2),这个数定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

10、特例法。

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一。般性存在于特殊性之中。

例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

Ⅳ 数学思维的一般方法有哪些

数学思想方法有:函数的思想、分类讨论的思想、逆向思考的思想、数形结合思想、函数与方程、化归与转化、整体思想、转化思想、隐含条件思想、极限思想。

3.逆向思考的思想

逆向思维,也称求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式 ,敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

4.数形结合思想

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。

Ⅵ 数学思维十种思维方式是什么

数学思维十种思维方式:

1、对照法

根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。

6、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

7、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。

方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

8、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

9、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。

这是一种不可缺少的形式思维方法。

10、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。

特例法的逻辑原理是:事物的一.般性存在于特殊性之中。

Ⅶ 大学数学思维方法有哪些

思维的概括性表现在它对一类事物非本质属性的摒弃和对其共同本质特征的反映。那么关于大学数学思维 方法 有哪些呢?下面就是我给大家带来的大学数学思维方法,希望大家喜欢!

大学数学思维方法

1、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

5、类比思想方法

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法

分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

8、集合思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法

小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

13、可逆思想方法

它是 逻辑思维 中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

15、变中抓不变的思想方法

在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

16、数学模型思想方法

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

17、整体思想方法

对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

初中数学学什么?

主要考查具体的“数”与“形”,以及抽象的“函数”

“数”——实数、代数式、代数方程

“形”——角与线、三角形、四边形、多边形、圆

“函数”——正反比例函数、一次函数、二次函数

这三者之间,知识相连,数形互通

环环相扣,无懈可击


大学数学思维方法有哪些相关 文章 :

★ 怎么学好大学数学有哪些学习方法

★ 大学数学怎么学?学好大学数学的8个方法

★ 数学八种思维方法介绍

★ 数学思维训练方法介绍

★ 有效的数学教学方法有哪些

★ 常用的数学教学方法有哪些

★ 大学数学学习独特的方法

★ 大学数学学习方法指导

★ 如何培养数学思维方式

阅读全文

与数学思维与方法是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:702
乙酸乙酯化学式怎么算 浏览:1370
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1008
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1367
中考初中地理如何补 浏览:1257
360浏览器历史在哪里下载迅雷下载 浏览:669
数学奥数卡怎么办 浏览:1347
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:821
武大的分析化学怎么样 浏览:1210
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1385
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015