⑴ 数学八种思维方法分别是
数学八种思维方法:代数思想、数形结合、转化思想、对应思想方法、假设思想方法、比较思想方法、符号化思想方法、极限思想方法。
详细介绍:
代数思想。
这是基本的数学思想之一,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!
数形结合。
是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。
转化思想。
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
对应思想方法。
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
假设思想方法。
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
比较思想方法。
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
符号化思想方法。
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
极限思想方法。
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
⑵ 数学八种思维方法是什么
数学八种思维方法是代数思想,数形结合,转化思想,对应思想方法,假设思想方法,比较思想方法,符号化思想方法,极限思想方法。解答数学题的转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单,更清晰。
数学不同于语文,英语等语言性学科,它对思维能力要求较大,只要掌握了同一类型题目的解题思维,不管题型再如何变化,我们都可以快速解答,数学源于生活又作用于生活,课本上的数学知识其实都可以在实际生活中找到原形,但需要你通过抽象,简化等方式转化成数学语言,因此,在学习数学时要多联系生活实际理解本质含义。
数学八种思维方法的内容
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式,敢于反其道而思之,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
逻辑思维是人们在认识过程中借助于概念,判断,推理等思维形式对事物进行观察,比较分析,综合,抽象,概括,判断,推理的思维过程,逻辑思维,在解决逻辑推理问题时使用广泛,创新思维是指以新颖独创的方法解决问题的思维过程,
通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法,视角去思考问题,提得出与众不同的解决方案,可分为差异性,探索式,优化式及否定性四种。
⑶ 数学思维十种思维方式是什么
1、公式法。
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
2、对照法。
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例:三个连续自然数的和是18,则这三个自然数从小到大分别是多少。
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
3、比较法。
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
1、找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
2、找联系与区别,这是比较的实质。
3、必须在同一种关系下(同-种标准)进行比较,这是“比较”的基本条件。
4、要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
5、因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生。
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路:每人多种7-5=2(棵), 那么,全班就多种了75+15=90(棵),全班人数为90+2=45(人)。
4、分类法。
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要故到大类之中的各小类不重复、不遗漏、不交叉。
例:自然数按约数的个数来分,可分成几类。
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1; (2)有两个约数的,也叫质数,有无数个; (3)有三个约数的,也叫合数,也有无数个。
5、分析法。
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,-直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件。
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
6、综合法。
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于己知条件较少,数量关系比较简单的数学题。
例:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路: 11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有: 3和19, 5和17。它们的差都是小于30的合数吗?和是44的两个质数有: 3和41, 7和37, 13和31。它们的差是小于30的合数吗?这就是综合法的思路。
7、方程法。
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待。
参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克。
这两题用方程解就比较容易。
8、参数法。
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例: 一项工作,甲多带带做要4天完成,乙多带带做要5天完成。两人合做要多少天完成。
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、.....都可以,只不过看作“1”运算最方便。
9、排除法。
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例:为什么说除2外,所有质数都是奇数。
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。 一个数的约数除了1和它本身外,还有别的约数(约数2),这个数定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
10、特例法。
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一。般性存在于特殊性之中。
例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
⑷ 数学思维十种思维方式是什么
数学思维十种思维方式:
1、对照法
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。
3、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
4、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
5、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
6、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
7、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。
方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
8、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
9、排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。
这是一种不可缺少的形式思维方法。
10、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。
特例法的逻辑原理是:事物的一.般性存在于特殊性之中。
⑸ 什么是转化思想什么是什么是从特殊到一般的数学方法
就是把所要解决的问题转化为另一个较易解决的问题或已经解决的问题。
转化思想是将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为已知知识范围内已经解决或容易解决的问题方法的数学思想。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际就是转化的过程。数学中的转化比比皆是,如:未知向已知的转化、数与形的转化、空间向平面的转化、高维向低维的转化、多元向一元的转化,高次向低次的转化等,都是转化思想的体现。
从特殊到一般的数学方法就是转化思想中的一部分,也就是从特殊的事例中总结出一半规律的过程就叫做从特殊到一般的数学方法。
(5)互为转想思维的数学有哪些扩展阅读:
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正,它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。