⑴ 数学分几大类
数学分26大类:
1、数学史
2、数理逻辑与数学基础:演绎逻辑学(也称符号逻辑学),证明论(也称元数学),递归论 ,模型论 ,公理集合论 ,数学基础 ,数理逻辑与数学基础其他学科。
3、数论:初等数论,解析数论,代数数论 ,超越数论,丢番图逼近,数的几何,概率数论,计算数论,数论其他学科。
4、代数学:线性代数,群论,域论,李群,李代数,Kac-Moody代数,环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),模论,格论,泛代数理论,范畴论,同调代数,代数K理论,微分代数,代数编码理论,代数学其他学科。
5、代数几何学
6、几何学:几何学基础,欧氏几何学,非欧几何学(包括黎曼几何学等),球面几何学,向量和张量分析,仿射几何学,射影几何学,微分几何学,分数维几何,计算几何学,几何学其他学科。
7、拓扑学:点集拓扑学,代数拓扑学,同伦论,低维拓扑学,同调论,维数论,格上拓扑学,纤维丛论,几何拓扑学,奇点理论,微分拓扑学,拓扑学其他学科。
8、数学分析:微分学,积分学,级数论 ,数学分析其他学科。
9、非标准分析
10、函数论:实变函数论 ,单复变函数论,多复变函数论,函数逼近论 ,调和分析 ,复流形,特殊函数论,函数论其他学科。
11、常微分方程:定性理论,稳定性理论 ,解析理论 ,常微分方程其他学科。
12、偏微分方程:椭圆型偏微分方程,双曲型偏微分方程,抛物型偏微分方程,非线性偏微分方程 ,偏微分方程其他学科。
13、动力系统:微分动力系统,拓扑动力系统,复动力系统 ,动力系统其他学科。
14、积分方
15、泛函分析:线性算子理论,变分法,拓扑线性空间,希尔伯特空间,函数空间,巴拿赫空间 ,算子代数,测度与积分,广义函数论,非线性泛函分析,泛函分析其他学科。
16、计算数学:插值法与逼近论,常微分方程数值解 ,偏微分方程数值解,积分方程数值解,数值代数,连续问题离散化方法,随机数值实验,误差分析,计算数学其他学科。
17、概率论:几何概率,概率分布,极限理论,随机过程(包括正态过程与平稳过程、点过程等) ,马尔可夫过程,随机分析,鞅论,应用概率论(具体应用入有关学科),概率论其他。
18、数理统计学:抽样理论(包括抽样分布、抽样调查等 ),假设检验 ,非参数统计,方差分析 ,相关回归分析 ,统计推断,贝叶斯统计(包括参数估计等),试验设计,多元分析,统计判决理论,时间序列分析,数理统计学其他学科。
19、应用统计数学:统计质量控制 ,可靠性数学 ,保险数学,统计模拟。
20、应用统计数学其他学科
21、运筹学:线性规划,非线性规划,动态规划,组合最优化 ,参数规划,整数规划,随机规划 ,排队论,对策论,也称博弈论,库存论,决策论,搜索论,图论 ,统筹论,最优化,运筹学其他学科。
22、组合数学
23、模糊数学
24、量子数学
25、应用数学(具体应用入有关学科)
26、数学其他学科
⑵ 数学分类有哪些啊
大致有如下几大部分:
1、分析:包括数学分析,实变函数,泛函分析,复分析,调和分析,傅里叶分析,常微分方程,偏微分方程等。
2、数论:包括初等数论,代数数论,解析数论,数的几何,丢番图逼近论,模形式等。
3、代数:初等代数,高等代数,近世(或抽象)代数,交换代数,同调代数,李代数等。
4、几何:初等几亮闭何,高等几何,解析几何,微分几何,黎曼几何,张量分析,拓扑学等。
5、应用数学:这里面棚差的分支太多了,例如概率统计,数值分析,运筹学,排队论等。
数学大致分为以下26个学科:
数学史、数理逻辑与数学基础、数论、代数学、代数几何学、几何链键皮学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论;
数理统计学、应用统计数学、运筹学、组合数学、模糊数学、量子数学、应用数学(具体应用入有关学科)、数学其他学科。
⑶ 从前的数学科目叫代数,与现在的数学科目有什么差别
链接: https://pan..com/s/1EhMqLsqKxRh94pmcYqyJng
⑷ 高中数学包括哪些内容
《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
公式口诀:
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴。
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集
《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
(4)高中数学分为代数几何和什么扩展阅读:
意义:
一、正确地理解概念
我国从20世纪50年代以来,中学数学教学大纲虽经历多次修订,但都有一个共同的指导思想,这就是搞好三基。并强调指出,正确理解数学概念是掌握数学基础知识的前提。而当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解,给忽视了。
一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;
另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。说是为了减负,其实南辕北辙,老师、学生的压力都增加了。
没有“过程”的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性。
二、对不同的概念,要采取不同的方法
有的只需在例题教学中实施概念教学。比如:相关关系的概念是描述性的,不必追求形式化上的严格。建议采用案例教学法。对比函数关系,重点突出相关关系的两个本质特征在:关联性和不确定性。
有的先介绍概念产生的背景,然后通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,提炼出本质属性。
有的要联系其它概念,借助多媒体等一些辅助设施进行直观教学。
三、在新旧概念之间掌握概念
数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。
⑸ 我国高中生具备了哪些基本的数学知识
高中数学内容包括集合与函数、三角函数、不等式、数列、复数、排列、组合、二项式定理、立体几何、平面解析几何等部分。具体总结如下:
1、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
2、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值。
3、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
4、《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
5、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
⑹ 高中数学知识点总结
《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载
链接:
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
⑺ 数学有哪些分类
数学有哪些分类
数学分支
1. 数学史
2. 数理逻辑与数学基础
a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。
3. 数论
a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。
4. 代数学
a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。
5. 代数几何学
6. 几何学
a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。
7. 拓扑学
a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。
8. 数学分析
a:微分学,b:积分学,c:级数论,d:数学分析其他学科。
9. 非标准分析
10. 函数论
a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。
11. 常微分方程
a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。
12. 偏微分方程
a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。
13. 动力系统
a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。
14. 积分方程
15. 泛函分析
a:线性算子理论,b:变分法,c:拓扑线性空间,d:希尔伯特空间,e:函数空间,f:巴拿赫空间,g:算子代数 h:测度与积分,i:广义函数论,j:非线性泛函分析,k:泛函分析其他学科。
16. 计算数学
a:插值法与逼近论,b:常微分方程数值解,c:偏微分方程数值解,d:积分方程数值解,e:数值代数,f:连续问题离散化方法,g:随机数值实验,h:误差分析,i:计算数学其他学科。
17. 概率论
a:几何概率,b:概率分布,c:极限理论,d:随机过程(包括正态过程与平稳过程、点过程等),e:马尔可夫过程,f:随机分析,g:鞅论,h:应用概率论(具体应用入有关学科),i:概率论其他学科。
18. 数理统计学
a:抽样理论(包括抽样分布、抽样调查等 ),b:假设检验,c:非参数统计,d:方差分析,e:相关回归分析,f:统计推断,g:贝叶斯统计(包括参数估计等),h:试验设计,i:多元分析,j:统计判决理论,k:时间序列分析,l:数理统计学其他学科。
19. 应用统计数学
a:统计质量控制,b:可靠性数学,c:保险数学,d:统计模拟。
20. 应用统计数学其他学科
21. 运筹学
a:线性规划,b:非线性规划,c:动态规划,d:组合最优化,e:参数规划,f:整数规划,g:随机规划,h:排队论,i:对策论(也称博弈论),j:库存论,k:决策论,l:搜索论,m:图论,n:统筹论,o:最优化,p:运筹学其他学科。
22. 组合数学
23. 模糊数学
24. 量子数学
25. 应用数学(具体应用入有关学科)
26. 数学其他学科
⑻ 现代数学包括哪些分支分别在什么阶段学习
现代数学的三大分支是:代数、几何、分析。数学的定义是研究集合及集合上某种结构的学科,是形式科学的一种,集合论和逻辑学是它的基础,证明是它的灵魂。由于它与自然科学尤其是物理学关系极为密切,有时数学也被归为自然科学六大基础学科之一。数学中未被定义的概念是集合,其他的一切都是有定义的。数学的标准形式是公理法,即给集合和集合上的某结构下一组公理,其他的一切理论都由这组公理推导证明而来。集合上的结构就是定义在几何元素或子集之间的一些关系,原始分为三类:描述顺序关系的序结构,描述运算关系的代数结构,描述临近关系的拓扑结构,这些结构可以互相结合成为其他一些复杂的结构,比如几何结构,测度结构等等。由这些结构构造出来的各种集合或者说空间,就是不同数学分支研究的内容。代数学研究具有若干代数结构的集合,比如群、环、体、域、模、格、线性空间、各种内积空间等等,这些结构最初都是由初等代数,或者说初等数论和方程式论的研究中抽象出来的。代数学包括:初等代数、初等数论、高等(线性)代数、抽象代数(群论、环论、域论等)、表示论、多重线性代数、代数数论、解析数论、微分代数、组合论等等。几何学研究具有若干几何-拓扑结构的集合,比如仿射空间、拓扑空间、度量空间、仿射内积空间、射影空间、微分流形等。最初是由欧氏几何发展而来。几何学包括:初等(欧氏综合)几何、解析几何、仿射几何、射影几何、古典微分几何、点集拓扑、代数拓扑、微分拓扑、整体微分几何、代数几何等等。分析学研究带有若干拓扑-测度的集合,以及定义在这些集合上的函数空间比如可测-测度空间、赋范空间、巴拿赫空间、希尔伯特空间、概率空间等等,由微积分发展而来。分析学包括:数学分析、常微分方程、复变函数论、实变函数论、偏微分方程、变分法、泛函分析、调和分析、概率论等等。