导航:首页 > 数字科学 > 解决数学问题的办法有哪些

解决数学问题的办法有哪些

发布时间:2023-06-15 11:34:56

Ⅰ 数学解决问题的方法

数学解决问题的方式主要是应用各种知识,让这些知识彼此之间配合起来,并且,配合的项目之间的联系有“单位1”,“常数”和“模式”,你也可以换用其他名字来表示这三项。也就是说,解决应用问题主要是把多种“有机联系”的方法结合起来。

Ⅱ 解决数学问题的常见方法与思路有哪些

一、用字母表示数的思想

这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b

二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。

6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。

三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.

四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

Ⅲ 数学解决问题的技巧和方法

数学解决问题的技巧和方法:形象思维方法、抽象思维方法、排除法。

1、形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。

它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。

3、排除法。利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

Ⅳ 数学的解决方法有那些

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2 bx c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

Ⅳ 解决数学难题的好方法

解决数学难题最好的方法就是掌握数学的基础知识和概念,然后多做练习题,在实践练习的过程当中,可以更好的帮助我们锻炼逻辑思维能力,这样对于解决数学难题效果是最好的。
此外在数学题目解题的过程当中,遇到不懂的题目或者概念要及时向老师请教,认真详细的听老师的讲解,把详细的内容理解透彻,这样才可以更好的解答数学题目,并且可以锻炼我们的分析能力,解题能力,从而数学的学习会变得更优秀。
有的同学感到,老师讲过的,自己已经听得明明白白了,但是,为什么自己一做题就困难重重了呢?其原因在于,同学们对教师所讲的内容的理解,还没能达到主要的学习效果。
每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,能否坚持如此,常常是好学生与差学生的最大区别
,尤其练习题不太匹配时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比学习,如果自己又不注意对此落实,那么学习的效果就会差别很大。
同学们一定要明确,现在正做着的题,一定不是考试的题目,而是要运用现在正做着的题目的解题思路与方法,因此,要把自己做过的每道题加以反思,总结一下自己的收获。
有的同学认为,要想学好数学,只要多做题,功到自然成,其实不然,一般说做的题太少,很多熟能生巧的问题就会无从谈起,因此,应该适当地多做题,并且在做题目的过程当中学会反思和总结,这样数学的知识掌握才会更全面,数学思维的锻炼也会更好。
进行章节总结是非常重要的,学习时是学生自主做笔记,做得细致深刻完整,自己给自己做总结,这样我们学习的效果才会理想,而且在学习的过程当中做笔记和做总结,能够加深我们对知识的印象,让我们对知识的理解更好,也能够真正做到理解题目,从而高效率解决所有数学。
数学的学习就是一个非常专业的过程,我们在学习的过程当中一定要有信心,要坚定认真的去学习,不要随意遇到困难就放弃,这样才能够更好的达到良好的学习效果,也能够培养我们坚持学习的精神,对于解决数学难题,会有非常好的帮助。

Ⅵ 数学解决问题的方法

总的来说,解决数学问题的方法有两种:综合法和分析法。综合法就是利用已有的条件和结论一步一步的推导出想要的结论,是一种直接解决问题的方法;分析法就是由要得到的结论倒推出必须的条件,然后再将推出的条件作为结论,继续倒推必要的条件……如此循环,直到最后推出所要的条件是已知的为止,此时问题已基本上解决了,只需按原路回推即可解决问题,这是一种间接解决问题的方法,但却行之有效。而实际应用中,往往两者结合使用。其他的那些解题方法,像转化、假设、替换、倒推等都只是这两种方法的细化而已。

Ⅶ 常用的数学解题方法有哪些

数学解题思想方法有哪些
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲.
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边.

一 线:函数一条主线(贯穿教材始终)
二 珠:代数、几何珠联璧合(注重知识交汇)
三 基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、
空间想象(丰富)、分解问题(灵活)
五 法:换元法、配方法、待定系数法、分析法、归纳法.
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高.

二.数学知识方法分论:

集合与逻辑
集合逻辑互表里,子交并补归全集.
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系.
真非假时假非真,或真且假运算奇.

函数与数列
数列函数子母胎,等差等比自成排.
数列求和几多法?通项递推思路开;
变量分离无好坏,函数复合有内外.
同增异减定单调,区间挖隐最值来.

三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通.
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同.

方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成.
参数不定比大小,两式不同三法证;
等与不等无绝对,变量分离方有恒.

解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点.
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析.

立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小.
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥.

排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它.
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家.

二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角.
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小.

概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争.
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真.

Ⅷ 小学数学问题解决策略有几种

小学生数学问题解决策略有:作图解决问题的策略、列举信息的策略、动手做的策略、尝试的策略等。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去。
1、作图解决问题的策略
线段图在解答分数问题时的作用是显而易见,教过小学高年级数学的教师都会对运用线段图来解答分数问题情有独钟,但线段图在解决其他类型的问题同样也会发挥其直观、形象作用。
2、列举信息的策略
枚举筛选法是指解某些数学题时,有时要根据题目的一部分条件,先把可能的答案一一列举出来,然后再根据另一部分条件检验,筛选出题目的答案。数学问题的解决过程既是一种不断地变更问题的过程,也是一种不断试错与筛选的过程。
3、动手做的策略
这是一种通过探索性动手操作而获得问题解决的策略。在学习空间与图形这一块内容时,动手做的策略就会显得很有效。如在讲授认识平行四边形这一新课时,教学目标就是要让学生能够自己动手操作探索出平行四边形的基本特征两条对边互相平行且相等。需要注意的是,在学生动手之前,教师不要给太多的暗示,要把实际操作策略的选择权留给学生,让学生在自主探索中实现操作策略的多样化。
4、尝试的策略
美国着名心理学家桑代克曾把人和动物的学习定义为刺激与反应之间的联结,联结是通过盲目尝试、逐步减少错误而形成的,即通过试误形成的。桑代克的尝试--错误说早在一百年前就提出来了,也被大多数人所认同。这里的尝试策略也就是多种方法的“试误”过程。不同的学生有着不同的数学水平,因此,要允许学生以不同的方式去学习数学。教师所要做的,就是要充分尊重每一个学生的个体差异,让学生采用尝试的策略去解决问题。

阅读全文

与解决数学问题的办法有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:945
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050