❶ 数学几何 圆形 证明之类的大题我都不会做,怎么办
1.与几何图形有关的定义,定理,性质和判定定理一定要熟记,这是解题的基础。(这是重中之重,不要
怕麻烦,去背一背吧)
2.典型的题要举一反三,掌握题的特点(有很多的题都是典型题的变形)
3.辅助线的做法是解题的关键,很多的辅助线都是根据已知条件和图形的特点做出来的,这就看你掌握和灵活应用图形的性质和定理的程度了。
4.哎!多做多练是最好的办法(还有什么比这更好的呢?)
最后:拿到题以后,不仅仅要看题,还要动起手来,只有动手才能有解题的思路。
以上是我的一些建议,希望对你会有些帮助。世上无难事,只怕有心人。要用心去做呀!
❷ 数学一大题不会怎么办
如果这些大题你不会做的话,那么你肯定是要多练习啊。
你要通过不断的练习,然后总结适合你自己的学习方法和做题方法。
这样的话,慢慢的独立做题,才能够学会怎么做这些数学一的大题。
❸ 数学题总是不会做我该怎么办
你好!
怎么来提高数学呢,我是过来人,我觉得数学需要很强的思维能力,所以你先听我说说:
第一,要注意调整心态,数学很好的人也有不会做的题。你有些题不会做,那很正常,别因此而烦恼。
第二,别认为数学很难,数学跟做游戏一样能带来乐趣。
第三,听老师讲课的40分钟。课后自觉复习和预习。基础知识先学扎实。那么一定会奇迹提高数学成绩的。
自学是非常非常关键的,尤其是基础知识的掌握。你要把数学当成一种游戏,基础知识是告诉你游戏规则。合理的利用这些规则,完成游戏,你便可以享受游戏带来的乐趣。
不知道你现在是初中还是高中了?还是说已经高三了。如果已经高三了,那你只能题海战术了。如果年纪还轻,先巩固知识,每了解一个知识点,做一道题巩固一下。当完全掌握后,做题就轻松了。平时要保证一定的题量,轻易不要问老师。简单的题一定独立完成,坚持一段时间之后。渐渐的你会发现当确实遇到不会的难题,你去问老师,当老师和你一起完成这个数学难题时。
这个时候你不但可以享受数学带来的快感。
这样也可以享受为难老师的快感。
我觉得要学好一样东西,首先你必须对它感兴趣,至少不能有排斥心理,所以我建议你首先要调整自己的心态,尽量要多对它感兴趣,如果你已经做到,那很好,就一定能把它学好。
当然光靠盲目的喜欢是不够的,不要对它产生畏惧情绪,我很多同学一提到数学就头痛,就害怕,如果你害怕碰它怎么可能学的好呢。我不知道你的底怎么样,我讲的很片面。一开始是很困难,就先从书本的公式定理抓起,任何考试都离不开书本。如果你觉得你已经把书本弄透了,很好,再耐下心来,不要不耐烦,把书上的题都做了,特别是刚学了新课的时候。书上的题是很简单,但是却是必不可少的过程,我知道很多同学都很藐视它,但考试往往就是越简单越多人做不来。
当你书上的题搞定了,OK,你的课外资料该发挥作用了,如果你是在学新课,尽量先把学校发的资料先做了,一来学校发的资料老师肯定会检查,应付老师是必要的,二来,学校为什么会订那本书?肯定是经过了多位老师商定很久才定下来的,必然有它的可取之处,你要坚信你的老师不会害你们的。如果这些你都做了,还有精力的话,你就要考虑自己找本书来啃了,你自己要找书就要考技巧了,你一定要考虑多方面的因素,比如题量,难度(要适当有所提高才行,但不能一味全是难题,高考不会把重点放在难题上,要选择有针对性的题)等,不能盲目看到别人买什么你就买什么,要买适合你自己的书,还要坚持做才行哦,我最大的毛病就是不能坚持,做一阵就不想做了。自己一般买一本就行了,你不可能一直只做数学啊,各科都要兼顾才行。
如果你是要复习,就比较难了,因为现在应该新课都还没上完,千万不能为了不旧帐又把新帐堆上了,最好利用周末用整块的时间来做,数学成绩肯定是要靠汗水和时间来堆的。你自己要有个计划,合理安排时间,尽量用最短的时间做到最高的效率。你在复习是,首先也是要把书本看一遍,然后由于以前学过,怎么也有点底子,尽量把你的记忆都挖出来,现在的高三复习书里都有知识概括,关上书,自己背着书把那些空填上,这样你没掌握的知识点一目了然,当然这是你做题会发现很慢,而且错误率很高,甚至以前做的来的题都不会了,不要怕,成绩再好的人都这样,慢慢你就会发现你越做越快,而且越来越熟练,很快你就可以把那些忘了的捡回来了,而且会有新的收获。
不管做什么题,都要勾出你觉得很经典的题,很难的题,以便以后复习,重复很重要,没事就把你以前勾的题翻来看看,说不定下次考试就会考到。而且数学逻辑性很强,一般看两遍就能记住,但看的时候,一定要学会总结解题的方法,不要下次换个数字你又不知道怎么做了,那你就白做了,总结也很重要哦~~
希望你能坚强一点,如果成为优等生,要学会面对别人的嫉妒和排挤 。
祝愿你能有耐心把它看完,祝你看后能有所收获,能有所提高。我是义乌博蕾特皮革程敏珍,希望我的回答能成为你最佳答案!谢谢!
❹ 初三数学大题不会做怎么办
你好,初三数学答题不会做首先你要对初中的整个数学有一个思维导图,知道题目所考的知识点是什么,得掌握知识并且会运用。做题方法很重要。以下常用方法:1、配方法;所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成—个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。
2、因式分解法,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。
3、换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、构造法;在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起—座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
5、反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为两种:一种是相反的结论只有一种,另一种是相反的结论有无数种。前者需要把相反的结论推翻,后者只要举出一个反例,就达到了证明的目的。
❺ 考试时我一个题都不会做,到底怎么才能学好数学啊如题 谢谢了
上课以及课前课后
同学们平时的学习时间是在课上,但是大家要树立一个意识:课前课后也很重要。利用好这些时间,在配合适当的学习方法,学好数学其实并不难。
课前:课前预习很重要,一方面可以先了解上课知识,课上能跟上老师思路,另一方面标记出自己不会的知识点,课上可以根据自己的情况侧重去听。
课上:课上45分钟,大多数同学都很难保证整节课集中精神,这就要求我们课前一定要预习,找到自己不会的知识点,课上尽量理解吸收。还是希望大家课上尽量集中精神,跟随老师的进度了解重点与难点,有利于复习。
课后:课后的时间一般用来复习,大家可以把自己没有掌握的知识点复习一下,也可以对本节所学知识进行检测与巩固。如果课后复习还存在不理解的地方,大家一定要找老师和同学去问清楚。
有了课前课上课后三个阶段,相信大家数学基础基本差不多了,也希望大家继续保持这个习惯。
提高作业效率
1、端正态度
估计同学们都被老师说过:想要学习好,首先要摆出一个学习的态度来。这句话没有错,对待作业,首先思想上要重视起来,养成一个良好的习惯。但是坚持一个好习惯是非常困难的,过程中很多同学容易产生放弃的念头,还会产生负面情绪,但是大家要知道,一个好习惯是受益终生的,养成好习惯,问题越来越少,成绩自然提高。
2、集中精力
不要在写作业的时候干其他的事或想其他事,一心不能二用。尽快地反作业做完了才能够去做别的事情。
3、学会总结
如果在看到题目后能很快反映出这题目所需要的知识点,那么做题速度就会提高,在做题之后也要总结一下思路。多总结一下会发现很多题目都有规律可循,这样可以起到事半功倍的效果,以后再碰到类似问题时,就可以很轻松了。
4、营造一个良好的学习环境
孩子写作业时尽量保持安静,书桌上除了放书、学习用品等之外,不要放其他的东西,以免分散他们的注意力。家长也不要过度的唠叨和训斥,要多鼓励孩子。
5、适当练习
大家都知道学习数学最重要的是练习,平时多做一些基础题可以锻炼解题熟练度,多做一些中档题可以熟悉考试题型,过于困难的题目不建议大家多做,可以尝试解决了解难度,掌握做题技巧,训练不要盲目,不要钻牛角尖。做题要学会总结,总结哪些题目经常出现,这可能是中考常考题型。有的同学每天都在做题,辅导书用掉一堆却没有提高,这就是盲目做题没有技巧,没有总结。
同学们在做题时多关注一下解题思路、方法、技巧等,掌握做题思路,总结做题技巧,这对考试来说至关重要考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
6、计算能力
计算一直是数学的一个核心内容,几乎每一个数学问题都需要通过计算。那么,计算的准确率就显得尤为重要了。想要提高数学成绩,计算的准确率是一定要提高的。
❻ 数学题不会做怎么办
数学题的做法:先理解,后做题。
每次上完课,先不要盲目的刷题,先把课堂上的知识点用脑子翻电影一样在脑海中过一遍。如果有缺漏或者不懂的地方,及时从书本中寻找答案,课本上的文字可以一个一个字去阅读。
2.知识性盲点或记忆盲区。
学生们不同努力和不同的智商,最后的结果可能都会有不同。很多知识在使用时会出现一些问题,比如理解题干上出现的问题,可能会过多纠结于其中的一个字眼或数字。或是因为紧张导致的记忆错乱,公式没有完全记忆。
3.思维的开路。
很多学生在当时的年龄段对于题目的理解能力会局限于一个方向,当你在做题中豁然开朗的时候会有一种思路打开的感觉。好像是突然开了窍,这种灵感或是顿悟,需要在大量的作业练习中去感悟锻炼。
❼ 做数学大题的技巧
高考依然到了最后的冲刺阶段,考生们依然坚持着最为紧张的复习。如何在众多知识点中把握住关键点,并掌握哪些技巧呢?那么接下来给大家分享一些关于做数学大题的技巧做数学大题的技巧,希望对大家有所帮助。
做数学大题的技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的 方法 是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
数学必考5类题型解题技巧
一、排列组合篇
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
二、立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的 热点 ,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
四、导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)几何问题代数化。
(2)用代数规则对代数化后的问题进行处理。
高考数学大题答题思路
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
做数学大题的技巧相关 文章 :
★ 做数学选择题的十种技巧
★ 做数学应用题的技巧
★ 做数学蒙题的技巧
★ 做数学压轴题的技巧初中
★ 高考数学大题答题技巧方法
★ 高考数学大题的解题技巧
★ 做数学题有何技巧方法
★ 做数学压轴题的技巧高中
★ 高考数学大题得分技巧