Ⅰ 关于数学史数学家的书
1、《几何原本》(Elements of Euclid)
欧几里德(Euclid,前300-前275?)古希腊数学家。
本书的印刷量仅次于《圣经》,是数学史上第一本成系统的着作,也是第一本译成中文的西文名着。原名《欧几里德几何学》,明朝徐光启译时改为《几何原本》。全书13卷,从5条公设和5条公理出发,构造了几何的一种演绎体系,这种不假于实体世界,仅由一组公理实施逻辑推理而证明出定理的方法,是人类思想的一大进步。此书从写作的时代一直流传至今,对人类活动起着持续的重大影响,直到19世纪非欧几里德几何出现以前,一直是几何推理、定理和方法的主要来源。
2、《算术研究》(Disquisitiones Arithmetical,1798)
高斯(C.F.Gauss,1774-1855),德国数学家。
“数学之王”的称号可以说是对高斯极其恰当的赞辞。他与阿基米德、牛顿并列为历史上最伟大的数学家。他的名言“数学,科学的皇后;算术,数学的皇后”,贴切地表达了他对于数学在科学中的关键作用的观点。他24岁时发表了这本书,这是数学史上最出色的成果之一,系统而广泛地阐述了数论里有影响的概念和方法。由此推倒了18世界数学的理论和方法,以革新的数论开辟了通往19世纪中叶分析学的严格化道路。高斯立论极端谨慎,有3个原则:“少些;但要成熟 ”:“不留下进一步要做的事情”。
3、《几何基础》(The Fuadations of Geometry,1854)
黎曼(B.Riemann,1826-1866),德国数学家。
黎曼是19世纪最有创造力的数学家之一。虽然他没有活到40岁,着作也不多,但几乎每篇文章都开创了一个新的领域。本篇是黎曼在格丁根大学任大学讲师时的就职演讲,是数学史上最着名的演讲之一,题为“关于构成几何基础的假设”。在演讲中黎曼独立提出了非欧几里德几何,即“黎曼几何”,又称椭圆几何。他的这一关于空间几何的独具胆识的思想,对近代理论物理学发生深远的影响,成为爱因斯坦相对论的几何基础。
4、《集合一般理论的基础》(Foundations of a General Theory of Aggregates,1883)
康托尔(G.Cantor,1845-1918),德国数学家。
康托尔创立的集合论,是19世纪最伟大的成就之一。本书是康托尔研究集合论的专着。他通过建立处理数学中无限的基本技巧而极大地推动了分析和逻辑的发展,凭借古代与中世纪哲学着作中关于无限的思想而导出了关于数的本质的新的思想模式。
5、《几何基础》(The Fuadations of Geometry,1899)
希耳伯特(D.Hilbert,1862-1943),德国数学家。
希耳伯特是整个一代国际数学界的巨人。由高高斯、狄利克雷和黎曼于19世纪开创的生气勃勃的数学传统在20世纪的头30年中主要由于希耳伯特而更为显赫着名。在本书中,希耳伯特用几何学的例子来阐述公理体系的集合理论的处理方法,它标志着几何学公理化处理的转折点。希耳伯特的名言:“我必须知道,我必将知道”,总结了他献身数学并以毕生业务使之发展到新水平的激情。
6、《测度的一般理论和概率论》(General Theoey of Measure and Probability Theory,1929)
柯尔莫哥洛夫(A.N.Kolmogorov,1903-1993),苏联数学家。
柯尔莫哥洛夫是20世纪最有影响的苏联数学家。他对许多数学分支贡献了创造性的一般理论。此篇论文是研究概率的名作,在随后的50年中被人们作为概率论的完全公理而接受。在1937年又出版《概率论的解析方法》一书,阐述了无后效的随机过程理论的原理,标志着概论论发展的一个新时期。
7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)
哥德尔(K.Godel,1906-1978),美籍奥地利数学家。
哥德尔在本篇中给出了着名的哥德尔证明,其内容是,要任何一个严格的数学系统中,必定有用本系统内的公理无法证明其成立或不成立的命题,因此,不能说算术的基本公理不会出现矛盾。这个证明成了20世纪数学的标志,至今仍有影响和争论。它结束了近一个世纪来数学家们为建立能为全部数学提供严密基础公理的企图。
8、《数学原理》(Elements Mathematique I-XXXIX,1939-)
本书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团。在本世纪30年代由法国的一群年轻数学家结合而成他们把人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典着作,成为许多研究工作的出发点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨着究竟何时算完,谁也说不清。但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无二的。
Ⅱ 数学史有关书籍. 请知道的朋友们推荐几本
韩雪涛的《从惊讶到思考:数学悖论奇景 》与另一本《三次数学危机》(这本书名没有记太清楚)很不错,浅显易懂,涉及面也广,很适合初三学生,不过在线阅读好像难了点,建议你去图书馆
《天才引导的历程 》
讲数学的,讲了十几位着名数学家的故事,以及他们的发现。非常经典,既有有趣的故事,又能学到很多数学知识。比如阿基米德是如何求圆的面积的,欧几里得是怎样证勾股定理的。 非常经典。
网上可以找到
《费马大定理》
数学上最具有传奇色彩的定理,与之有关的种种故事。以讲故事为主,几乎涵盖了整个数学史。尤其值得一提的是,里面用通俗的语言介绍了一些最新最现代的数学知识。引人入胜。
《量子物理史话》
国人写的一本关于量子力学的科普书,讲述了量子力学发展过程中那些激动人心的事件。作者是一位不愿透露身份的神秘人物。 刚开始只是作为连载,发在论坛上,没想到引起了轰动, 现已出版。 网上随处可见。 内容非常丰富, 尤其值得一提的是, 最后几章由量子力学引发的对宇宙的思考, 一定会让你对这个世界有全新的认识。
《从一到无穷大》
科普书里面的至尊宝典,地位无须多说。
《从惊讶到思考-数学悖论奇景》
关于数学悖论的非常有趣的书,作者是大名鼎鼎的马丁.加德纳, 图文并茂。 三思科学网站有电子版。
《数学大师-从芝诺到庞加莱》
关于历史上有名的数学家的传记,堪称同类中最经典的。商务印书馆80年代出版的时候叫《数学精英》,现在改名叫《数学大师》,出版社换成了上海科技教育出版社。 台湾的一个网站上有部分章节的电子版(大概有2/3吧,手工输入的,功德无量啊),网站名字叫阿仁的数学之家。
第一推动丛书,有很多本, 不过可能不是太好懂
万物简史,新浪上有连载
通俗数学丛书,一套,十几本吧,包括数学游戏与欣赏、数学趣闻集锦、数学与联想、20世纪数学的五大指导理论等
物理世界奇遇, 也很经典
魔鬼出没的世界,作者 卡尔.萨根, 经典
暂时介绍这么多,其中大部分都可以在网上找到
Ⅲ 关于数学的书有哪些
数学史通论(翻译版)(海外优秀数学类教材系列丛书)
《数学史通论》(翻译版)共分四大部分:6世纪前的数学;中世纪的数学(500-1000);早期近代数学(1400-1700);近代数学(1700-2000).《数学史通论》主要特色如下:1.灵活的编排:尽管《数学史通论》主要是按年代顺序编排的,但每一时期则是围绕某一专题展开的.读者通过查阅详尽的标题,就能对该时期历史的全程进行跟踪.2.不同时期的重要教材:《数学史通论》每一章中都会讨论一种或几种那个时期的重要教材,通过它们,不仅能学习那些伟大数学家的思想,今天的学生还能看到某些论题在过去是怎样被处理的.3.非西方数学:《数学史通论》相当多的材料是关于中国、印度及伊斯兰世界的数学的;在插入章中还比较了大约在14世纪初各主要文明的数学.4.人物传记和评注:《数学史通论》配有100多张纪念历代数学家及其工作的邮票和图片,并着重用框图给出数学家的小传.
此外,《数学史通论》在习题配置、专题讨论、内容的前后呼应等方面都有许多特色.《数学史通论》可供综合大学、师范院校以及理工科各专业的学生作为数学史课程的教材,也可供广大数学工作者和一般科学爱好者阅读参考.相信中学师生也会从《数学史通论》中获益.
数学的发现
《数学的发现:对解题的理解研究和讲授》是着名美国数学家乔治·波利亚的力作.在书中,作者通过对各种类型生动而有趣的典型问题(有些是非数学的)进行细致剖析,提出它们的本质特征,从而总结出各种数学模型.作者以平易浅显的语言,应用启发式的叙述方法,讲述了有高度数学概括性的原理,使得各种水平的读者,都获益匪浅.这种以简驭繁,寓华于朴,平易而生动的讲授,充分反映了一位教育大师的风格特征.本书各章末尾的习题与评注,是正文的延续,它们都是经过作者的精心选择安排,与正文紧密关联的不可分割的部分.这些练习,为读者提供了一个进行创造性工作的极好机会,它将激起你的好胜心和主动精神,并使你品尝到数学工作的乐趣.
数学与艺术
有些人对于数学和艺术有成见,认为数学通过人的右脑工作,艺术通过人的左脑丁作.数学家理性而严谨,艺术家感性而浪漫.他们是两个完全不同类型的人群.本书要推翻这个成见.在本书中读者将看到一些数学家如何为艺术而孜孜不倦地工作,而一些艺术家如何热衷于数学的最新发现.事实上.现在已经有这样一些现代数学家他们不仅是现代数学的开拓者,而且是造诣很深的艺术家,同时也有这样一些艺术家.他们利用数学原理创作出使人意想不到的优秀作品,在这里数学与艺术完全沟通起来了.
数学对艺术的影响由来已久,在文艺复兴时期艺术家利用透视原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品.艺术家们从斐波那契数列、最小曲面、麦比乌斯带中得到启发,数学家们利用睢塑来宣扬数学的成就.
高观点下的初等数学
菲利克斯·克莱因是19世纪末20世纪初世界最有影响力的数学学派——哥廷根学派的创始人,他不仅是伟大的数学家,也是现代国际数学教育的奠基人、杰出的数学史家和数学教育家,在数学界享有崇高的声誉和巨大的影响.
本书是克莱因根据自己在哥廷根大学多年为德国中学数学教师及在校学生开设的讲座所撰写的基础数学普及读物.该书反映了他对数学的许多观点,向人们生动地展示了一流大师的遗风,出版后被译成多种文字,是一部数学教育的不朽杰作,影响至今不衰.全书共分3卷.第一卷:算术,代数、分析;第二卷:几何;第三卷:精确数学与近似数学.
克莱因认为函数为数学的”灵魂”.应该成为中学数学的“基石”,应该把算术、代数和几何方面的内容,通过几何的形式用以函数为中心的观念综合起来;强调要用近代数学的观点来改造传统的中学数学内容,主张加强函数和微积分的教学,改革和充实代数的内容,倡导”高观点下的初等数学”意识.在克莱因看来,一个数学教师的职责是:”应使学生了解数学并不是孤立的各门学问,而是一个有机的整体”;基础数学的教师应该站在更高的视角(高等数学)来审视.理解初等数学问题,只有观点高了,事物才能显得明了而简单;一个称职的教师应当掌握或了解数学的各种概念、方法及其发展与完善的过程以及数学教育演化的经过.他认为”有关的每一个分支,原则上应看做是数学整体的代表”,“有许多初等数学的现象只有在非初等的理论结构内才能深刻地理解”.
本书对我国从事数学学习和数学教育的广大读者具有较好的启示作用,用本书译者之一,我国数学家、数学教育家吴大任先生的话来说,”所有对数学有一定了解的人都可以从中获得教益和启发”,此书”至今读来仍然感到十分亲切.这是因为,其内容主要是基础数学,其观点蕴含着真理……”.
中学数学的数学史
本书是根据我国“中学数学教育标准”撰写的.书中介绍了与中学数学教材内容相配套的数学史知识,如球体积公式的历史、二项式定理的历史、n倍角正、余弦公式的历史、解析几何的诞生、对数的发明、机会游戏与概率等;还从理论上探讨了数学史与数学教育的关系,阐述了数学史在数学教学中的作用及如何将数学史融入数学教育等问题,是师范院校数学系学生、数学史教师和中学数学教师的参考书.
Ⅳ 求有关数学历史的书
你好
美国数学家克莱因的 《古今数学思想》(上海科学技术出版社),是数学史方面的一部巨着,中译本四卷,共1500页,近120万字,由北大数学系10余位院士、教授花费多年译就。这部书从古埃及、巴比伦谈起,直到1930年代,对数学的发展做了全面、深入、细致的描述。书中的数学都以数学家的学术讨论和争鸣的形式表达,也很注意把数学放在文化背景之中,还不时穿插大数学家的简短生平,所以很有看头。
对于1930年以后的数学, 《古今数学思想》没有提及,考虑到20世纪数学的庞杂精深,写一部象样的《20世纪数学史》几乎是不可能的。这时,《20世纪数学经纬》(张奠宙着,华东师范大学出版社)问世了。张教授曾多次采访陈省身、杨振宁,很有想法,而且他自幼酷爱文学,文笔相当好。全书共70节,100多位大师被立传,往往只是寥寥数笔,大师的形象和成就便跃然纸上,使读者油然而生钦佩之情。“经纬”意味着70节是有独立性的,不是按历史顺序滴水不漏地写,但仍可清楚地看到全书的中心思想,即告诉你什么是好的具有代表性的数学。像庞加莱、阿蒂亚这样的大师,重在对数学进行整体把握,推动数学理论发展,促进数学内部及与相关学科的联系,或是研究三体问题、费马大定理这样的重大问题。这才是做好的数学,它需要深邃的直觉和洞察力;而单纯地追求技巧上的高难度(初等数论中的大量问题最合这种胃口),恐怕至多只能算“不坏”的数学;至于人为规定一些概念和公理,它们非常孤立,与主流数学没有直接关系,不能对解决实际问题提供帮助,那就是在做“坏”的数学。历来凡是极端和人为的做法,都是不长久的。一切归于自然,归于中道,是为大道理。辽宁教育出版社一向在数学史图书出版方面用力甚勤,他们最新的奉献是《祖冲之科学着作校释》(严敦杰着)和《世界数学通史》(上、下册,梁宗巨等着)。梁宗巨是数学史专业的研究者,曾任中国科技史学会副理事长,全国数学史学会副理事长。《通史》一书计130余万字,详尽地记述了数学在世界上各个文明中产生和发展的历史,并包含有若干作者的独得之见,如对古今中外记数法的分类、泰勒司测量金字塔的问题、对“费马大定理”的新理解等等。此套书的下册是梁宗巨先生去世之后,他的学生在其手稿的基础上完成的,火断薪传,令人感佩。
最近还有一本由王元、胡作玄两位专家鼎力推荐的《数学的故事》(海南出版社),它从文化的角度讲述数学的过去和今天,插图尤为精美,适合对数学了解不多的人阅读。《数学史》(斯科特着,侯德润译,广西师范大学出版社)也是有点名气的作品,它反映的是较早的数学史,内容上颇有新意。
Ⅳ 有哪些好的数学史书或是数学家传记
科学的价值> <科学与方法> <科学与假设>,庞加莱科学三部曲。作者和希尔伯特算是最后两位全能数学家,号称数学家中的数学家,数学巨人。我没看完,文章哲学性较强,好像不容易读懂,据乌拉姆说,他第一次读的时候也是似懂非懂,值到以后他才慢慢完全理解文章思想。
<最后的沉思>,庞加莱。我还没看。
<库朗:一位数学家的双城记>,康斯坦丝-瑞德。库朗,希尔伯特学生,哥廷根数学学派最后一个掌门人(之前是F.克莱因和希尔伯特),因为二战去了美国,主持组建库朗应用数学研究所。<什么是数学(what is mathematics)>,库朗。只来得及看过一点,强烈推荐。<我的一生:马克思-玻恩自述>,马克思-玻恩。作者自传 ,出身哥廷根,希尔伯特学生,他是一名物理学家,诺贝尔奖获得者。
<诗魂数学家的沉思> <对称>,赫尔曼-外尔。我只看过一点,作者曾是希尔伯特助手。<数字情种:埃尔德什(Erdos)传>,保罗-霍夫曼。Erdos,数学奇才,好像是一生到处跑,到哪就找当地的数学合作发文章。
<高观点下的初等数学>,F.克莱因。买了书,不知何时有时间看。
Ⅵ 我国古代有哪些着名的数学着作
我国古代着名的数学着作有《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等10部算书,被称为“算经十书”。
1、《九章算术》
《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。
《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史着作,是当时世界上最简有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
2、《周髀算经》
《周髀算经》原名《周髀》,是算经的十书之一。中国最古老的天文学和数学着作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
《周髀算经》在数学上的主要成就是介绍了勾股定理。(据说原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的)及其在测量上的应用以及怎样引用到天文计算。)
3、《海岛算经》
《海岛算经》是中国学者编撰的最早一部测量数学着作,亦为地图学提供了数学基础。由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。
唐初开始单行,体例亦是以应用问题集的形式。研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。有人说是实用三角法的启蒙,不过其内容并未涉及三角学中的正余弦概念。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。
4、《张丘建算经》
《张丘建算经》,中国古代数学着作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。
自张邱建以后,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
5、《缉古算经》
《缉古算经》 ,中国古代数学着作之一,王孝通撰。他是唐代初期数学家。根据《旧唐书》、《新唐书》以及《唐会要》的记载,王孝通出身于平民,唐高祖武德年间(公元623年前后)担任算学博士,奉命与吏部郎中祖孝孙校勘傅仁钧制订的《戊寅历》,提出异议30余条,被提升为太史丞。
王孝通把毕生的精力都用在数学的研究方面。称得上是这一时期最伟大的数学家。他的最大贡献是在总结前人研究的基础上,写作了《缉古算术》。
(6)有关数学历史方面的书有哪些扩展阅读:
中 国早在春秋时期就已经出现了用来计算的算筹,至公元前一世纪,更是出现了《周髀算经》这一部数学着作,而我们现在所熟知的勾股定理在此书中就已提出,在此 之后的《九章算术》、《海岛算经》、《孙子算经》、《四元玉鉴》等数学着作进一步将中国古代数学发展带向新的高峰,但在进入明清之后,随着封建中央集权达 到顶峰,对思想的管控也愈发紧,带来的直接影响便是科学技术发展的缓慢,而数学作为一门基础学科其发展更是受到冲击,在明代之后逐渐出现断层,但直至《新 集通证古今算学宝鉴》的被发现,才让世人了解明代数学发展的水平。
《新集通证古今算学宝鉴》,全书共四十二卷,二百零三条,三百一十七诀,一千二百六 十问,订为十二册。该书对璎珞图、连环图等数字排列纵横图进行了大量的复杂研究,其中的一些研究方法如正等测图法更是超越了同时期的研究,而在一些问题的 运算方法上,较前代数学家不同的是,王文素强调以算法为中心,即首先将问题整理分类,但在对问题进行计算时却以运算方法为分类根本。该书最大的特色就是书 中的例题全部来源的现实生活之中,加、减、乘、除直至复杂的开方全部是由王文素采用珠算计算,因而《新集通证古今算学宝鉴》也被称为中国的第一部朱算书。