⑴ 数学q是什么意思
Q是有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
有理数命名由来
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学着作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
⑵ 数学里Q是代表什么
数学里的Q代表有理数集即全体有理数组成的集合。
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S
⑶ q在数学中代表什么
数学q代表什么:数学中Q表示有理数集。
1、数学中q代表有山毕理吵禅数集,即由所有有理数所构成的集合,有理数集是实数集的子集,有理数集是一个无穷集,不存在最大值或最小值。有理数为整数(正整数、0、负整数)和分数的统称。
3、有理数中的“有理”是翻译的错误,按照其原意应该翻译成“可比数”,即能够写成比例形式的数,在汉语的数学词典等工具书中通常定义为“能够表为分数的数”或类似的表达, 这个定义一直未变。