导航:首页 > 数字科学 > 小学数学概念的呈现方式有哪些

小学数学概念的呈现方式有哪些

发布时间:2023-06-26 11:40:25

Ⅰ 小学数学概念形成过程包括哪些方面

浅谈小学数学中的概念教学
概念是客观事物的本质属性在人们头脑中的反映,概念教学的过程是认识从感性上升到理性的过程。小学生年龄小,生活经验不足,知识面窄,构成了概念教学中的障碍。而数学概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数学知识的首要条件,也是进行计算和解题的前提。因此,重视数学概念教学,对于提高教学质量有着举足轻重的作用。那又如何搞好小学数学概念教学呢?下面我粗浅地谈谈自己的一些看法:概念教学一般都分四个阶段:引入 、形成 、巩固 、发展。 一、概念的引入
1、概念的引入是概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。
2、同时,在概念的引入中要格外做到旧知识的迁移。
任何一个数学概念都是在以往概念的基础上演变发展而来的,前一个概念是后一个概念的基础和推理依据,旧概念铺垫不好,就会影响新概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。 在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。
3、最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9??,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。
或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.777、7.32132、2.??这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.??、0.??具备了循环小数的本质属性,它们都是循环小数。
2.注意比较有联系的概念的异同。
数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的概念。如教学“质数和合数”时,先指毁唤给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。 3、运用变式,突余态出概念的本质属性。
概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过唯凯不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些
横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:
a. 看谁填得又对又快!
237+69=306 502-387=115 306-□=237 387+□=502 □-237=69 □-115=387
这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

Ⅱ 小学数学教学中的变式教学

所谓“变式”,就是指教师有目的、有计划地对命题进行合理的转化。在新课程标准的指引下,数学教学方法也在不断改进、创新。数学教学不应局限于一个狭窄的课本知识领域里,应该是让学生对知识和技能初步理解与掌握后,进一步的深化和熟练,使学生在学习中学会运用课本的知识举一反三,应用数学“变式教学”的方法是十分有效的手段。

一、概念性变式

数学概念在教学中的变式主要包括两类:一类是改变概念的外延的呈现,即概念外在形式在变化,属于概念外延集合的变式;另一类是改变数学概念的内涵,即呈现于原概念有某些相同非本质属性的反例,它不属于原概念的外延集合。概念性变式是小学数学概念教学中的重要手段,其作用是帮助学生“去伪存真”,获取对概念的多角度理解与较全面的认识。

1.变化概念的非本质属性

所谓概念的非本质属性,是指对该概念不具有决定意义的属性。变化概念的非本质属性是在小学数学概念教学中采用最多的概念性变式。它的心理学依据是,概念变式在转换事物非本质特征时呈现了事物表象的多样性,丰富学生的感性经验,使他们认识概念外延集合的各种典型代表。

例如,在教学“梯形的认识”,一般教师都会给出一些“非标准”的梯形让学生识别,以帮助学生排除标准图形所带来的负面干扰,避免出现误将“上底长,下底短,腰反向(腰相等),无直角”等非本质属性当作梯形本质特征的片面认识。

那么,这一行之有效的教学方式如何在新课程改革背景下“与时俱进”呢?我认为可以尽可能地创造条件,变“教师演,学生看”为学生自己动手操作。仍以“梯形的认识”教学为例,我尝试了两种方式。

一是让学生把平行四边形沿直线剪成两个四边形,使它们都不是平行四边形(如图1)。

二是让学生用半透明的长方形与三角形纸片重叠出四边形(如图2)。

同样是观察变化非本质属性的变式图形,但观察对象不是教师提供的,而是学生自己动手构造的,两种方式都能使学生在生成性操作与观察活动中动态地认识发现梯形的共同特征,取得了较好的效果。这也说明变式直观的教学效果,在一定程度上取决于学生的主动性及独立性的发挥。

2.变化概念的本质属性

所谓本质属性,是指该类事物独有的、必然具有的,因而也是能与其他事物加以区分的属性。教学中适当地变化概念的本质属性,让学生通过辨析,从反例、错误中体会概念的本质属性,促进理解。

在实际教学中,上述两种概念变式也可以结合使用。例如“垂直”的概念辨析,图中是标准图形,是本质属性的改变,则是非本质属性的改变,它们从正反两面揭示了垂直概念的本质特征。让学生看图做出正确的判断,从而达到多角度理解概念,确切地把握概念本质特征的教学目标。

二、过程性变式

学生的数学学习过程是一个自主构建对数学知识理解的过程,他们带着自己原有的知识背景,活动背景和理解走进学习活动,并通过自己的主动活动,去建构对数学的理解。在小学数学教学实施过程性变式,旨在优化学生的学习过程,通过变式铺垫,建立学习对象与学习者已有知识内在、合理的联系,使学生逐步获取知识或解决问题。这也是数学数学课程改革理念在课堂教学中得到具体落实的体现。

1.意义建构的过程变式

意义建构的过程是新信息与长时记忆进行试验联系的过程,其中伴随着一个随时对建构结果进行检验的过程。为达成所学数学知识的有意义建构,教师就应关注学生的最近发展区,所谓最近发展区,指的是学习者独立问题的解决实际能力与在成人知道下或更有能力的伙伴合作下所达到的潜在发展水平之间的距离。教师在教学中实施意义建构的变式教学,就是强调教师通过适当的、动态的变式,引发、促进学生最近发展区的形成,最终实现潜在的发展水平。教学中,教师们常有的过程性变式教学策略“铺垫”就是形成数学知识意义建构的有效教学方式。

2.规律探究的过程变式

小学数学中的一些比较适合让学生进行探究学习的内容,比如关于物体面与体的很多计算公式,它们既具有相对的独立性,又有互相渗透,互相联系的层次性。

以梯形面积公式的推导为例,在此之前学生已经掌握了长方形(包括正方形)、平行四边形、三角形面积的计算公式,对图形的转换以及对转换思路“将面积计算公式未知的图形转换成面积计算公式已知的图形”也有了一定的认识。这些都是探究梯形面积公式时可利用的基础。

教学时先复习长方形、平行四边形、三角形的面积计算公式,并让学生叙述平行四边形,三角形的面积计算公式的推导过程。

接着提出探究目标:找出梯形的面积计算公式。

启发学生思考:

①你打算把梯形转化为什么面积公式已知的图形?

②怎么转化,是拼,还是割补,还是划分?

③你会计算转化后图形的面积吗?

④试一试,总结梯形面积计算公式。

在探究、交流的过程中,各种转化变式的出现是随机的,一节课内学生想到的变式种数也有较大的差异。我的对策是学生能得出几种就出示、交流几种,不求全。如果转化为平行四边形、长方形、三角形的三条基本思路和拼、割补、划分的三种基本方法有缺失,就启发感兴趣的学生课后继续探究。同样,学生采用不同的方法得到的不同算法,也不强求统一成梯形面积计算公式的标准形式。因为多样化的算法有利于开拓学生的思路,这也是实施过程性变式的目的之一。事实上学生最终都会认同梯形面积计算公式的标准形式:。

不同的学生数学学习的差异是客观存在的,规律探究的过程性变式关注的是学生的探究与体验,教师构建适当的变异空间,铺设适当的潜在距离,不同学生经历的过程、获得结果与感悟有所差异是自然的、正常的。

三、训练性变式

数学训练是数学教学不可缺少的环节,也是获取数学知识的有效手段。训练性变式包括训练题目的变式、解决方法的变式与训练实施的变式。数学的训练变式由来已久,很多教师都在自觉或不自觉设计、实施变式训练,但在以往的教学实践中多数教师最为关注的是解题方法的变式,追求解题方法的多样性。这里着重从习题的设计的视角讨论训练题的变式。

1.扩缩性变式

扩缩性变式就是依据数学知识之间内在的联系,在习题设计时采用改变条件或改变问题的方式,使数学问题的结构由简单到复杂(扩)或由复杂到简单(缩)地发生变化,以帮助学生“拾级而上”。“扩”反映了认知与训练逐步递进的发展、变化与深入,是一种“由薄到厚”的学习、训练过程;“缩”则体现了数学的“化归”思想.是一种“由厚到薄”的学习、训练过程。

例如.“解方程”的综合性练习可设计如下变式题组:

这是由简到繁的设计,意在凸显方程求解过程就是运用等式性质不断化简方程的过程,最终得到最简方程x=2,从而帮助学生明确解方程的思路,掌握解方程的方法。实践表明,学生通过练习,确能有所感悟。

扩缩性变式在小学数学实际问题解决的教学与训练中有着比较广泛的应用,通常表现为把一个只需一步或两步计算的实际问题改变成需要两步、三步计算才能解决的实际问题,或者相反。这是问题解决复习课最常用的教学与训练方式之一,它能让学生看到实际问题发展变化的来龙去脉,有利于帮助学生形成“以简驭繁”的思路。

2.可逆性变式

可逆性变式是指数学题目中的条件与问题互相置换的变化。它要求教师在对学生进行正向思维训练的同时关注逆向思维的训练.从而有效地培养学生思维的变通性。可逆性变式也是实际问题解决的常用教学手段。例如,要求学生将求路程的题目改编成求时间或求速度的题目。实践表明,经常进行这种实际问题改编的口头练习,有助于学生掌握相关问题的结构,多侧面地掌握数量关系。

3.情境性变式

情境性变式主要用于实际问题解决的教学,通常是保留问题的数学模型,改变问题情境的内容。情境性变式不仅有利于学生“体会数学与自然及人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心”,还有助于提高学生运用所学数学知识分析、解决实际问题的能力。

例如,以“鸡兔同笼”问题为原型,我们设计了一组情境性变式:

①拼装9辆三轮车和自行车,共用了22个车轮。三轮车和自行车各装了几辆?

②l8个同学同时在6张乒乓球桌上进行单打、双打比赛。有几个同学在单打?

通过练习.使学生透过不同的问题情境看到相同的数学实质,如果列成方程,这些方程具有相同的结构形式:⑴设三轮车装了x辆,依题意,得方程3x+2(9-x)=22;⑵设有x张球桌在单打,依题意,得方程2x+4(6-x)=18。

显然,这对发展学生的抽象概括能力、对培养学生初步的数学建模能力都是非常有益的。

4.开放性变式

开放性变式是指改变题目的条件或者问题,使答案或解题策略具有多样性。它能突破思维定势的束缚。促进发散性思维的生成,是培养学生数学思维灵活性的一种有效途径。开放性变式可以分为条件开放、结论开放、策略开放三种类型。

条件开放如“在一条笔直的公路上,小明和小刚骑车同时从相距500米的甲乙两地出发,小明每分钟行200米,小刚每分钟行300米,多少时间后,两人相距5000米”。这里去掉了两人的运动方向,导致出现相向、背向、同向(小明在前或小刚在前)等多种情况。

结论开放如“把正方形划分成四个形状、大小都相同的图形,你能想到几种分法”。

策略开放最常见的就是所谓“一题多解”的训练。这里就不再举例了。

一般来说,开放性变式训练应当在一定的基础性练习之后。根据教与学的需要设计并酌情进行。恰到好处的条件开放、结论开放、策略开放的变式训练,能够激发学生参与数学练习的兴趣,在达成知识技能学习目标的同时,也有利于学生发散思维、求异思维、直觉思维的培养。

此外,上面分别讨论的几种变式训练方式也可以综合使用,即形成“综合性变式”。例如,上面扩缩性变式给出的方程,其方程的解都是x=2,反过来,要求学生“写出解是x=2的方程”。这就是比较典型的可逆性变式与开放性变式相结合的变式训练。

变式教学可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,可以帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。

总之,在新课标下的教师要不断更新观念,因材施教,继续完善好“变式”教学模式,最终达到提高教学质量的目的,并为学生学好数学、用好数学打下良好的基础。

Ⅲ 数学概念的定义方式有哪些

属加种差定义法。

这种定义法是中学数学中最常用的定义方法,该法即按公式:

“邻近的属+种差=被定义概念”下定义

其中,种差是指被定义概念与同一属概念之下其他种概念之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。

“平行四边形”的定义为:两组对边分别平行的四边形叫做平行四边形。


揭示外延的定义方法

(1)逆式定义法。

这是一种给出概念外延的定义法,又叫归纳定义法.

例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法。

(2)约定式定义法。

揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如

就是用约定式方法定义的概念。

Ⅳ 小学数学概念的小学数学概念表现形式

在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。 用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5……叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。
一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。
另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。
一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会教材的这两个特点。

Ⅳ 小学数学学科内容的呈现具有什么的特征

小学数学学科内容的呈现具有直观性的特征。

【原题】小学数学学科内容的呈现具有()的特征。

A、系统性。

B、直观性。

C、精确性。

D、完整性。

【正确答案】B。

当前我国小学数学教学方式的特征:

1、体现价值的主体性,为使数学课程内容能有效促进学生学习,首先要努力确立学生在数学教学的主体地位。

2、体现知识的现实性,小学数学课程内容的组织应当从儿童现实生活出发。

3、体现学习的探究性,内容的不同呈现方式将在很大程度上决定着不同的学习方式,课程内容应为学生的主动探索与发展提供空间与机会。

4、体现经历的体验性,应注重儿童的数学体验,不断激发儿童学习数学的兴趣和愿望。

5、体现过程的开放性,内容的呈现除了要有一定的生成性的空间外,还应注意留有多多样性和创造性空间。

6、体现呈现多样性,不同的内容对应不同的教学方式,教材的不同应呈现给学生不同的任务与情境。

Ⅵ 举例说明小学数学概念形成的过程

根据数学概念学习的心理过程及特征,数学概念的教学一般也分为三个阶段:①引入概念,使学生感知概念,形成表象;②通过分析、抽象和概括,使学生理解和明确概念;③通过例题、习题使学生巩固和应用概念。

(一)数学概念的引入

数学概念的引入,是数学概念教学的第一个环节,也是十分重要的环节。概念引入得当,就可以紧紧地围绕课题,充分地激发起学生的兴趣和学习动机,为学生顺利地掌握概念起到奠基作用。

引出新概念的过程,是揭示概念的发生和形成过程,而各个数学概念的发生形成过程又不尽相同,有的是现实模型的直接反映;有的是在已有概念的基础上经过一次或多次抽象后得到的;有的是从数学理论发展的需要中产生的;有的是为解决实际问题的需要而产生的;有的是将思维对象理想化,经过推理而得;有的则是从理论上的存在性或从数学对象的结构中构造产生的。因此,教学中必须根据各种概念的产生背景,结合学生的具体情况,适当地选取不同的方式去引入概念。一般来说,数学概念的引入可以采用如下几种方法。

1、以感性材料为基础引入新概念。

用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。

例如,要学习“平行线”的概念,可以让学生辨认一些熟悉的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,然后分化出各例的属性,从中找出共同的本质属性。铁轨有属性:是铁制的、可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义。

以感性材料为基础引入新概念,是用概念形成的方式去进行教学的,因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。

2、以新、旧概念之间的关系引入新概念。

如果新、旧概念之间存在某种关系,如相容关系、不相容关系等,那么新概念的引入就可以充分地利用这种关系去进行。

例如,学习“乘法意义”时,可以从“加法意义”来引入。又如,学习“整除”概念时,可以从“除法”中的“除尽”来引入。又如,学习“质因数”可以从“因数”和“质数”这两个概念引入。再如,在学习质数、合数概念时,可用约数概念引入:“请同学们写出数1,2,6,7,8,12,11,15的所有约数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的所有分类方法中,哪一种分类方法是最新的分类方法?”

3、以“问题”的形式引入新概念。

以“问题”的形式引入新概念,这也是概念教学中常用的方法。一般来说,用“问题”引入概念的途径有两条:①从现实生活中的问题引入数学概念;②从数学问题或理论本身的发展需要引入概念。

例如,在学习“平均数”时,教师可以先向学生呈现一个“幼儿园小朋友争拿糖果”的生活情境,让学生思考,为什么有的小朋友很高兴,有的小朋友很不高兴?应该怎样做才能使大家都高兴?接下来应该怎么做?这个幼儿园的老师可能会怎么做?

4、从概念的发生过程引入新概念。

数学中有些概念是用发生式定义的,在进行这类概念的教学时,可以采用演示活动的直观教具或演示画图说明的方法去揭示事物的发生过程。例如,小数、分数等概念都可以这样引入。这种方法生动直观,体现了运动变化的观点和思想,同时,引入的过程又自然地、无可辩驳地阐明了这一概念的客观存在性。

(二)数学概念的形成

引入概念,仅是概念教学的第一步,要使学生获得概念,还必须引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念的本质属性。为此,教学中可采用一些具有针对性的方法。

1、对比与类比。

对比概念,可以找出概念间的差异,类比概念,可以发现概念间的相同或相似之处。例如,学习“整除”概念时,可以与“除法”中的“除尽”概念进行对比,去比较发现两者的不同点。用对比或类比讲述新概念,一定要突出新、旧概念的差异,明确新概念的内涵,防止旧概念对学习新概念产生的负迁移作用的影响。

2、恰当运用反例。

概念教学中,除了从正面去揭示概念的内涵外,还应考虑运用适当的反例去突出概念的本质属性,尤其是让学生通过对比正例与反例的差异,对自己出现的错误进行反思,更利于强化学生对概念本质属性的理解。

用反例去突出概念的本质属性,实质是使学生明确概念的外延从而加深对概念内涵的理解。凡具有概念所反映的本质属性的对象必属于该概念的外延集,而反例的构造,就是让学生找出不属于概念外延集的对象,显然,这是概念教学中的一种重要手段。但必须注意,所选的反例应当恰当,防止过难、过偏,造成学生的注意力分散,而达不到突出概念本质属性的目的。

3、合理运用变式。

依靠感性材料理解概念,往往由于提供的感性材料具有片面性、局限性,或者感性材料的非本质属性具有较明显的突出特征,容易形成干扰的信息,而削弱学生对概念本质属性的正确理解。因此,在教学中应注意运用变式,从不同角度、不同方面去反映和刻画概念的本质属性。一般来说,变式包括图形变式、式子变式和字母变式等。

Ⅶ 小学数学教材的组织与呈现有哪些基本的方式

教材呈现形式多样化,提高学生的学习兴趣学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采取不同的表达方式,以满足多样化的学习需求。教学中可以采用对话、图文、表格、信息、漫画、故事、游戏等形式呈现教材内容,激发学生的学习兴趣。

Ⅷ 小学数学中体现的数学思想与方法有哪些

1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

Ⅸ 小学数学概念教学的几种方法

数学概念是数学教学的重点内容,也是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件。在小学数学教学中,会遇到众多的概念、定律,如果学生能在理解的基础上,掌握正确完整的数学概念,就有助于掌握各种性质、法则、公式等基础知识,有助于各种、能力的形成和提高。但有些学生采用死记硬背的机械方法来记这些概念、定律,这样必然带来解答问题中的生搬硬套,影响学生对知识的理解和应用,也影响学生思维能力的发展和学习积极性的提高。因此,在数学教学过程中,数学概念的教学尤为重要。笔者结合教学实践,就小学数学概念教学的基本方法进行交流和介绍,以期实现共同提高教学效益。
一、以旧引新法
数学中的许多概念,都与旧知识有着内在的联系,教师就要引导学生充分运用旧知识,从中引出新概念来。这样既概括了旧知识,又学了新概念,有利于精讲多练。例如在对“比的基本性质”这一概念教学时,首先将以前学过的除法的基本性质、分数的基本性质进行一次复习和巩固。让学生理解“被除数和除数同时扩大或同时缩小相同的数(零除外),以及分数的分子和分母同时乘以或除以同一个数(零除外),得出的商(分数值)不变。”这两个性质,让学生自己从这两个性质中得出“比的基本性质即比的前项和比的后项都同时扩大(或缩小)相同的倍数(零除外)比值不变。从而达到在复习巩固已学概念的同时,掌握新新概念,并能在学习中灵活地运用新知识和掌握新知识。
二、直观引入法
感知是认识过程的初级阶段,感知所积累的感性材料,是理性认识的基础,缺乏足够的感性材料,思维就不能进行,让学生借助直观的作用形成充分的表象才能有助于概念教学的形成。直观引入法适用于几何形体的概念,整数、分数的概念。数学概念之间不是孤立的,而是存在着各种各样的联系,有相邻的、有相反的、有并列的等等。特别是到了高中年级,随着知识面的不断扩展,概念的不断增多,思维方式从形象思维向逻辑思维过渡,但这种抽象逻辑思维在很大程度上,仍要凭借事物的具体形象或表象来完成。例如,在教学长方体和正方体一单元中棱和面的概念时,如果教师只凭着书本来讲是很难讲清楚的,学生也很难理解和掌握。只要拿一个长方体让学生观察,他们就能清楚地看到棱是由两个面相交的一条边。长方体有几个面,每个面都是长方形的(也可能有两个相对的面是正方形),从而给学生建立起正确、严谨、完整的棱和面的概念,这样既激发了学生学习的兴趣,又调动了学生的学习积极性。
三、区别比较法
在小学数学中,有些概念含义接近,但本质属性又有区别,这类概念学生比较容易混淆,必须把他们加以比较,以避免相互干扰。比较时主要是找出它们的相同点和不同点,是学生看到进行比较对象的内在联系,又看到它们的区别,这样学得概念就更加明确了。如在对于“比”和“比例”这一章节中出现的“比”的基本性质、“比例”的基本性质,学生难以理解,也很容易将二者混淆。为了帮助学生理解和掌握这两个概念,在课堂教学中,教师可以采用区别比较的教学方法,先从“比”和“比例”这两个概念入手,理解两个数相除,又叫做这两个数的比,而这两个数之间的运算关系,“比例”则是两个“比”间的等量关系。“比”是由两个数组成的,而比例则是由四个数构成的等式。如2:3与3:7=9:21,前者是比,后者才是比例。这样学生理解了“比的前项和后项都同时扩大或者都同时缩小相同的倍数(零除外)比值不变”这一比的基本性质后,再来理解“在比例里,两个内项之积等于两个外项之积”,这一比例的基本性质就比较容易了。再如,在进行“质数”与“互质数”的教学时,也可以采用此方法,质数是指根据约数的个数而言的,质数是给某一个数(自然数)下结论。即一个数的约数只有1和它本身,这个数就是质数。而两个数的公约数只有1,这两个数叫互质数。通过区别比较,学生就不会将二者混淆了。
四、情境引入法
马克思曾经说过:“激情、热情是人强烈追求自己对象的本质力量。”所以,教师在课堂教学中,要注意 运用具体事例,去激发学生的求知欲,为学生创设乐学的情境。 如教学“圆的认识”时,可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地 回答:“都是圆形的。”“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑 板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师 揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短 几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取 得事半功倍的效果。
五、计算引入法
有的概念, 与计算有着紧密的关系。因此,可通过计算来引入概念。如通过计算 11 ÷ 3,41 ÷ 33,55 ÷ 6 等发现余数重复出现,商也重复出现,然后引入循环小数的概念;又如通过计算 19 ÷ 7 而引入被除数、除数、商和余数的概念;再如通过计算圆周长与直径的比值,引入圆周率的概念等。
总之,小学数学概念教学方法是多种多样的,只要教师在教学中能教给学生方法,就能做到既教给学生知识,又能培养学生的思维能力,全面提高数学教学质量。

Ⅹ 如何进行小学数学概念教学

1.直观形象地引入概念

数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,利用铅笔做教具,重温“平均分”的概念。用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆5朵红花、再摆和红花一样多的5朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
5、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。

阅读全文

与小学数学概念的呈现方式有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:733
乙酸乙酯化学式怎么算 浏览:1396
沈阳初中的数学是什么版本的 浏览:1341
华为手机家人共享如何查看地理位置 浏览:1034
一氧化碳还原氧化铝化学方程式怎么配平 浏览:876
数学c什么意思是什么意思是什么 浏览:1398
中考初中地理如何补 浏览:1288
360浏览器历史在哪里下载迅雷下载 浏览:692
数学奥数卡怎么办 浏览:1378
如何回答地理是什么 浏览:1012
win7如何删除电脑文件浏览历史 浏览:1045
大学物理实验干什么用的到 浏览:1476
二年级上册数学框框怎么填 浏览:1689
西安瑞禧生物科技有限公司怎么样 浏览:942
武大的分析化学怎么样 浏览:1240
ige电化学发光偏高怎么办 浏览:1329
学而思初中英语和语文怎么样 浏览:1639
下列哪个水飞蓟素化学结构 浏览:1417
化学理学哪些专业好 浏览:1478
数学中的棱的意思是什么 浏览:1048