导航:首页 > 数字科学 > 什么叫数学概念

什么叫数学概念

发布时间:2023-06-30 11:51:10

① 数学概念

一、数学概念的意义

1.概念的意义

逻辑学认为,概念是反映事物(思维对象)及其特有属性(本质属性)的思维形式。人们对客观事物的认识一般是通过感觉、知觉、思维形成观念(印象或表象),这是感性认识阶段,在感性认识的基础上,通过对客观事物的分析、综合、比较、抽象、概括、归纳与演绎等一系列思维活动,从而认识事物的本质属性形成概念,这是认识的理性阶段。理性认识在实践基础上不断深化,形成的概念又会进一步发展。

2.数学概念的意义

数学概念是一类特殊的概念,是其所反映的事物在现实世界中的空间形式和数量关系及其本质属性在思维中的反映。如平行四边形的概念在人的思维中反映出:这样的对象是四边形形状的而且两组对边是分别平行的。这就是四边形的本质属性。

数学概念在数学思维中起着十分重要的作用,它是最基本的思维形式。判断是由概念构成的,推理和证明又是由判断构成的,可以说,数学概念是数学的细胞。

概念是反映客观事物的思想,是客观事物在人们头脑中的抽象概括,是看不见摸不着的。要通过语词表达出来,才便于人们研究、交流,数学概念也不例外。如平行四边形概念用语词表达就是:“两组对边分别平行的四边形叫做平行四边形”。

数学概念的语词表达的一般形式是“(概念的本质属性)……叫做……(概念的名词)”。

二、数学概念的内涵和外延及它们之间的反变关系

1.数学概念的内涵和外延

客观世界的事物千差万别,反映在人的思维中也就千差万别,所形成的概念也千差万别,语词表达出来也是如此。但它们都有一个共同特点,都是用来认识和区别事物的。我们把一个概念所反映的所有对象的共同本质属性的总和,叫做这个概念的内涵。如平行四边形的内涵就是平行四边形所代表的所有对象的共同本质属性的总和:有四条边,两组对边分别平行……我们把适合概念的所有对象的范围,叫做概念的外延。如有理数和无理数,就是实数这个概念的外延。同样,实数和虚数,也是复数这个概念的外延。内涵和外延是概念的两个方面,正确的思维要求概念明确,明确概念即是要明确概念的内涵和外延。

对数学概念显然也有上述定义的结论。这对理解数学概念,指导数学概念的教学有十分重要的意义。

2.概念的内涵与外延的反变关系

要对概念加深认识,还要注意逻辑学中称之为概念的内涵与外延的反变关系,即:概念的内涵扩大时,其所得的新概念的外延缩小;当概念的内涵缩小时,其所得的新概念的外延扩大。反之,也成立。例如,在“矩形”概念的内涵中增加“一组邻边相等”的属性时,就得到外延缩小了的“正方形”的概念;在“矩形”的概念中去掉“有一个角是直角”的属性,就得到外延扩大了的“平行四边形”的概念。

利用概念的内涵与外延的反变关系,通过采取扩大概念的内涵同时缩小概念的外延的方法来研究概念间的关系和性质,这种方法在逻辑学中称之为“概念的限制”;通过缩小概念内涵的同时扩大概念外延的方法来认识同类概念的共同性质,这种方法在逻辑学上称之为“概念的概括”。在中学数学的概念教学中,经常使用概念的限制和概括的方法给新概念下定义和复习同类概念的共同性质。

三、概念间的关系

② 数学概念有哪些

概念 (mathematical concepts):是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。

在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则
什么是数学数学思想方法有哪些数学思维方法数学数学思维数学是什么数学定理大全数学方法有哪些数学的意义数学思想
概述
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵--对象的"质"的特征,及其外延--对象的"量"的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果--和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。

许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。

总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。

数学概念
一、基本概念

1.描述统计。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

2.概率的统计定义。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现"出现正面"或"出现反面"的次数大约各占总抛掷次数的: 左右。这里的"大量重复"是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;

某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?

因为前30年出现晴天的频率为0.83,所以概率大约是0.83

③ 数学的概念是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。 数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。 基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 词源 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 (拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。

知道了吗???

④ 什么叫做数学概念

概念主要指的就是数学上的定义及与定义相关的一些知识。

例:
1、圆的概念:到定点的距离为常数的点的轨迹。
2、圆的切线定义:与圆只有一个公共点的直线称为圆的切线。
3、一般曲线切线的定义:曲线的割线中,其中一个交点趋向于另一交点时,割线的极限如果存在,则称为切线。
4、函数导数的定义:当函数在某一点处自变量的增量趋向于零时,函数增量与自变量增量的比值的极限,如存在,就称为函数在该点处的导数。
5、函数在某点的导数就是函数在该点处切线的斜率。

以上概念都是临时想的,不一定很严格,数学概念要求非常严格。
也不知你是什么年龄,能否看懂。

⑤ 数学是什么意思

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段。

定义:

亚里士多德把数学定义为“数量数学”,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几轿察何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质敏帆巧,一些强调了它的抽象性,一些强调数学中的某些话题。

即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”

⑥ 什么是数学概念

众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手.

概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来.

因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法.

一、从概念的产生背景着手,层层深入

对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它.

教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍?

这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题?

紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 .

在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解.

二、从概念的生活背景出发,创设学习情境

很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸.

等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中.

为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念:

阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当他追到1里处时,乌龟前进了里,当他追到了里,乌龟前进了里;当他追到了里,乌龟又前进了里……

(1)分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;

(2)阿基里斯能否追上乌龟?

让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,积极性和主动性高涨,课堂气氛也十分活跃.

三、从概念的历史背景出发,激发兴趣

复数和虚数的概念有悠远的历史背景,是数发展到一定的阶段的必然产物.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,在学生的有限的知识结构中也找不到虚数的生活原型,所以学生很难完全理解它.因此,在讲解这两个概念时,可以将数的发展史、虚数与复数的出现历程作简单阐述,为了表述得清晰而有趣,教师可以把这过程制作成动画短片:

从原始人分配食物开始,首先是自然数的出现,然后到分数的出现.接下来经过漫长的数的发展,人们又发现了很多不能用两整数之比写出来的数,如圆周率等.人们把它们写成π等形式,称它们为无理数.到19世纪,由于运算时经常需要开平方,如果被开方数是负数,比如,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.这样,可以让学生融入教学中,跟着故事的结尾一起思索,然后引入新概念:数学家们就规定用符号"i "表示"-1"的平方根,即=-1,虚数就这样诞生了.实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.种引入概念的过程新颖别致,一开始就能抓住学生的眼球,吸引他们的注意力,使课堂教学轻松有趣.

四、从概念的专业背景出发,讲求实用

许多数学概念在其他的专业领域应用也非常广泛.把数学知识和其他专业知识有机结合在一起,可以让学生充分认识到数学学习的重要性.

三角函数这一概念在很多专业领域都有重要的应用.在物理方面,简单的和谐运动,星体的环绕运动,峰谷电;在心理生理方面,情绪周期性波动、智力体力的周期性变化、一天内的血压状况;天文地理方面,气温变化规律,月缺月圆、潮涨潮汐的规律;日常生活中,车轮的变化,这一切的研究都离不开三角函数.

因此三角函数的应用课里,可以设计一些有周期性变化规律的实际问题,让学生建立简单的三角函数模型,培养学生数学建模,分析问题、数形结合、抽象概括等能力,体验数学在解决实际问题中的价值和作用,培养学生勤于思考、勇于探索的精神.

学生对新概念的学习只有在已有知识的基础上才能构建,所以教师在教学时一定要注意教材所设计的知识结构.要做到既不脱离课本,又不拘泥于课本,要有大胆的创新精神.要根据学生实际情况,设计好每一堂概念课.

⑦ 什么是数学概念,

数学概念是现实生活中某一数量关系和空间形式的本质属性在人的思维中的反映。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。

⑧ 什么叫数学

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

(8)什么叫数学概念扩展阅读:

一、数学空间

空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。

数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。

在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

二、数学标点

数学是一门国际性的学科,对各个方面都要求严谨。

我国规定初等及以上的数学已可以算作是科技类文献。

我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”.

在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.

⑨ 数学概念是什么

问题一:什么是数学,数学的概念 数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特互、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自

问题二:数学概念的含义是什么,中学数学常见的数学概念的定义方式有哪些 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这......>>

问题三:数学概念理论对数学概念教学有什么意义 新概念是基于数学逻辑建构形成时,常采用概念同化教学方式,即直接揭示概念的定义,借助已有知识进行同化理解.用这种方式教概念,可有不同的引入途径,需要强调的是应让学生理解引入新概念的必要性.这种方式其实是通过逻辑演绎进行概念教学.由于是从抽象定义出发,所以应注意及时用典型实例使概念获得“原型”支持,形成概念的“模式直观”,以弥补没有经历概念形成的“原始”过程而出现的概念加工不充分、理解不深刻的缺陷. 概念教学的基本原则是采用与概念类型、特征及其获得方式相适应的方式,以有效促进概念的理解.由于数学概念大都可通过逻辑建构而产生,因此概念同化是学生获得数学概念的主要方式,尤其是中学阶段,这样能让学生更清楚地认识概念的系统性和层次性,有利于学生从概念的联系中学习概念,在概念系统中体会概念的作用,从而不仅促进学生的概念理解,而且有利于概念的灵活应用.当然,如果学生的认知结构中,作为新概念学习“固着点”的已有知识不充分时,则只能采取概念形成方式. 概念符号化是概念教学的必要步骤,这是因为数学概念大都由规定的数学符号表示,这使数学的表示形式更简明、清晰、准确,更便于交流与心理操作.这里要注意让学生掌握概念符号的意义,并要进行数学符号和其意义的心理转换技能训练,以促进他们对数学符号意义的理解.

问题四:这个数学概念是什么意思 数学中常用的符号,
Σ,求和(连加)。
∏,求积(连乘)。

问题五:数学的定义是什么? 数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

问题六:历史上关于数学概念的定义有哪些 1、公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学”。
2、16世纪英国哲学家培根(1561―1626)将数学分为“纯粹数学” 与“混合数学”。
3、在17世纪,笛卡儿(1596―1650) 认为:“凡是以研究顺序(order)和度量(measure)为目的的科学都与数学有关”。
4、19世纪恩格斯这样来论述数学:“纯数学的对象是现实世界的空间形式与数量关系”。根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
5、19世纪晚期, *** 论的创始人康托尔(1845―1918)曾经提出: “数学是绝对自由发展的学科,它只服从明显的思维,就是说它的概念必须摆脱自相矛盾,并且必须通过定义而确定地、有秩序地与先前已经建立和存在的概念相联系”。
6、20世纪50年代,前苏联一批有影响的数学家试图修正前面提到的恩格斯的定义来概括现代数学发展的特征:“现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学”。
7、从20世纪80年代开始,又出现了对数学的定义作符合时代的修正的新尝试。主要是一批美国学者,将数学简单地定义为关于“模式” 的科学:“【数学】这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性” 。

问题七:数学上值和数概念上区别是什么 某个物体所含数量的多少称这个物体的值,也就是说这个物体的值就是对它的量化结果。
可以换个相同的概念说明:某种商品可以卖多少钱,就叫这个商品的值,这和数学中值的概念基本是一个意思。

阅读全文

与什么叫数学概念相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:732
乙酸乙酯化学式怎么算 浏览:1396
沈阳初中的数学是什么版本的 浏览:1341
华为手机家人共享如何查看地理位置 浏览:1034
一氧化碳还原氧化铝化学方程式怎么配平 浏览:876
数学c什么意思是什么意思是什么 浏览:1398
中考初中地理如何补 浏览:1288
360浏览器历史在哪里下载迅雷下载 浏览:692
数学奥数卡怎么办 浏览:1378
如何回答地理是什么 浏览:1012
win7如何删除电脑文件浏览历史 浏览:1045
大学物理实验干什么用的到 浏览:1476
二年级上册数学框框怎么填 浏览:1689
西安瑞禧生物科技有限公司怎么样 浏览:940
武大的分析化学怎么样 浏览:1239
ige电化学发光偏高怎么办 浏览:1329
学而思初中英语和语文怎么样 浏览:1639
下列哪个水飞蓟素化学结构 浏览:1417
化学理学哪些专业好 浏览:1478
数学中的棱的意思是什么 浏览:1048