Ⅰ 数学建模方法和步骤
数学建模的方法:
一、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来橡让配推导出模型。
二、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
三、仿真和其他方法。
1、计算机仿真:实质上是统计估计方法,等效于抽样试验。包括离散系统仿真和连续系统仿真。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
梁指3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
数学建模的步骤:
一、模型准备:了解问题的实际背景滑雹,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
二、模型假设:根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设。
三、模型构成:根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
四、模型求解:可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法进行求解。
五、模型分析:对模型解答进行数学上的分析。
Ⅱ 数学建模的步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。
希望能解决您的问题。
Ⅲ 数学建模五个步骤顺序
数学建模五个步骤顺序如下:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。
如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
Ⅳ 数学建模的一般步骤
数学建模的一般步骤如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数。
2、 建立数学模型并数学、数值地求解、确定参数。
3、 用实际问题的实测数据等来检验该数学模型。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
Ⅳ 数学建模5步建模发的五个基本步骤是什么
所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果
Ⅵ 数学建模的步骤
数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。