Ⅰ 数学需要整理题型吗怎么整理题型
市面上有这样的参考资料,其实数学的资料通常是这样的,三类第1类关于基础知识详细讲解的类似于教材全解之类的,或者是拓展。第2类就是你所说的基本题型,有大量的整理的比较详细的基本问题,由易到难有综合性的,也有关于思想方法的。第3个就是有一定梯度习题集。当然这些个人建议在搞好课本上的知识的基础上再去进行学习,效果更好。课本是根本已经蕴含了很重要的基本问题,而且也是考察的重点。
Ⅱ 数学整理的方法
基础理论学起:在学习数学前首先应该从最基础的东西开始学习,因为数学的每一个理论或者每一个环节都是以前一个基础理论为前提的,是环环相扣的理论链的关系。带着这种观点去学习也就不必去死记硬背一些定理、推理之类的知识了,学习起来自然就显得更加容易了!
避免眼高手低:数学是一门理论联系实际的学习,熟悉、理解基础理论概念只是学好数学的前提,最终的目的还是用于实际的操作中,或者说用于咱们的日常生活中去。所以要勤于做题练习,坚决避免眼高手低的学习态度,“实践是检验真理的唯一标准”,数学也不例外!
四大思维模式 :数学体系的四大思维体系:数形结合、函数思想、分类讨论、方程思想。在学习数学过程中要做到已知量和未知量的有机结合,用已知数值通过函数的方式和方程的形式展现出来,在未知待定的情况下,通过分情况的方式加以讨论并解析出问题的不同情况的答案!
Ⅲ 如何整理数学信息
一步一步的来,不要着急,不要冲动,理清思路,注意力集中,发挥你的想象力,记忆力,全神贯注,你就会整理了。
Ⅳ 如何归纳和整理数学笔记
画图列表都是比较好的方法
Ⅳ 数学笔记应该怎么整理
数学笔记我认为应该把公式之类整理在一起,把理论定义整理在一起。
Ⅵ 如何有效地复习整理数学知识点
数学的逻辑性很强,知识往往分散在不同阶段,学生对这些知识理解容易割裂。在阶段学习的基础上需对各领域内容进行系统整理与复习。整理与复习是要把平时相对独立进行教学的知识,其中特别重要的是把带有规律性的知识,以再现、整理、归纳等方法串联起来,进而加深学生对知识的理解、沟通。它既不同于新授课,更不同于练习课。其基本任务就是整理知识,使之系统化、清晰化,并具有拓展性。
它的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通,做到梳理——训练——拓展,有序发展,真正提高复习的效果。
如何进行有效地复习与整理呢?
一、梳理归纳,沟通联系,强化基础
基础知识与基本技能是数学学习的基础,创新能力的高楼必须建立在扎实的双基基础之上,只有具备扎实的数学基础,学生才会出现创新的可能。教师要引导学生进行回顾与整理,使学生在平时学习的基础上沟通各部分之间的联系。在回顾与整理时,应以双基为基础,充分发挥学生的主体作用,引导学生自主整理知识,形成知识网络,体验数学的系统性。
但是在这样的学习过程中,必须注意两个问题:一是由于小学生受到知识结构和能力水平的限制,学生所要整理、沟通的知识内容的切人点一定要小,做到小而精,提出的学习要求要明确,以便学生能更好地进行整理;二是在学生整理时,教师应适当给予一些帮助,学生的整理尽管是不完整或粗糙的,教师也应给予充分地评价,并结合学生的整理,取其精华概括出较合理的知识网络图。
在平时的学习中,有些学生可能对基本概念的理解不够重视,有些学生则会在理解法则上有些模糊。对于易混淆的知识点,教师适时引导学生结合具体的事例进行理解,让学生在理解的基础上进行记忆;同时对学生已能熟练记忆的基础知识,再要求学生加强理解,弄清知识间的联系,分清类似知识点的区别,从而更好地掌握基础知识。如果学生对钝角的概念只是机械记忆,只记概念“大于90度,小于180度的角是钝角”,没有准确理解钝角概念的内涵与外延,会认为“钝角大于90度”是正确的。对于商不变规律“被除数和除同时乘或除以相同的数(零除外),商不变”。学生往往会把0除外忽视,还会影响分数的基本性质的学习。
二、合理训练,提高能力,发展思维
在回顾与整理的基础上,需要通过合理的训练以巩固学生所学知识。只有通过合理的训练、反馈,才能暴露出学生在学习中存在的问题,同时训练可以锻炼学生如何应用已有知识解决具体的数学问题的能力。学生在回顾与整理中具备了一定的数学基础知识与技能,那么在巩固与应用环节的训练中,首先要培养学生的应用意识,让他们学会合理地应用已有知识和常见的解题策略来解决数学问题。巩固与应用中的训练应注重训练量的合理,这就要求教师在训练中精选习题,注重习题的创新性,同时适当加强训练题的趣味性和生活味,以激发学生的兴趣,调节学生心理。
从教学实践来看,有时一些具有一定思维难度的数学题,也会激起学生的探究欲望。激发学生的学习兴趣与热情是平常教学,更是复习时很重要的教学手段:即通过创设情境激发学生学习的兴奋点,让学生在复习时也有新鲜感,从而以一种积极的心态投人到复习中,避免以往复习课那种沉闷的气氛及面面俱到的“炒冷饭”般的复习方式。
数学是思维的体操,思维活动是数学学科的特征,任何数学教学活动都不能缺少思维活动,复习课同样不例外。因此在复习的全过程中,教师必须以培养学生的思维能力为目标,注重学生思维的发展与提高,在发展与提高学生思维能力的过程中,教师应注重培养学生的解题的灵活性与创新意识。培养学生解题的灵活性,可通过一题多解进行,例如在解决“5米长的铁丝重250克,2500克的一捆铁丝有多长?”时,学生可能会先求出每米铁丝的重量再求这捆铁丝的重量或先求出每克铁丝的长度再求这捆铁丝的长或根据重量比与长度之比求出铁丝的长度。在这种一题多解的训练中,让学生体验解题的灵活性,发展他们的思维能力。同时,一题多解的训练,还可培养学生在解题过程中,当某种思路受阻时,可以换一种思路来解决问题。此外教师要在课堂上留给学生思考的时间和空间,鼓励他们发挥自己的创造力,让他们的想象得到充分的展现。让学生提数学问题,解决生活实际的问题。
三、培养良好的学习习惯,提高学习效益
在复习过程中,要注意培养学生良好的学习习惯。良好的学习习惯不仅能提高学习,而且一生受益。
总之,整理和复习课的形式要多样化,运用多种方法和策略,揭示数学知识之间的联系与区别,并帮助学生掌握相关规律,认识事物的本质,达到整理有序和复习有效的目的,使学生在获得对数学理解的同时,思维能力、个性品质、情感态度等方面都得到发展。
Ⅶ 如何整理数学思路
其实这个经验很重要,平时需要大量的去做题,做得多了,自然而然的就会有思路了,这样不管以后遇到什么样的题型,都会知道这类型题的做题思路。
Ⅷ 小学数学如何整体梳理
问题一:比值写单位吗?
在传统教材里,小学阶段比被定义为“两数相除又叫两数的比,比的前项除以后项的商叫做比值,比值又叫比率”,它是表示两种量的倍数关系,所以比值是没有单位的。比在表示同类量比时比值不带单位;比在表示不同类量的比时是可以带单位的,如:跑36千米大约需要2时,路程与时间的比大约是18比1,比值是18,这个比值表示表示每小时跑18千米,后面的单位是千米/时,这时是带单位的。也就是说,由于比的概念的扩展,当两个不同类量相比时,会产生一个新的的量,这个新的量就是两个不同类量的比值,是一个带单位的量。由于比的概念扩展到不同类量相比,相应地,比的意义则趋向采用比较广义的解释,如果教师把比值有无单位当作选学内容,恰当融入相关内容的教学中适当点拨,那么学生进入中学后对不同类量的比就不会怀疑或抵触。但无论点拨与否,教师应当明白:同类量的比,比值是一个比率,没有单位;不同类量的比,比值是一个量,有单位。
问题二:整数都可以看成分母是1的假分数吗?
分析: 小学数学五年级练习册第48页有一道判断题:整数都可以看成分母是1的假分数。先来看一下假分数的定义:和真分数相对,分子大于或者等于分母的分数叫假分数。也就是假分数都大于1或等于1。再看" 整数都可以看成分母是1的假分数"这句话中“整数”也包含了0,显然0作为分子比分母1要小。所以这句话是错误的。此题考查假分数的意义,要明确所有的自然数中只有0不能看作分母是1的假分数。可以更正为:所有非零自然数可以看成分母是1的假分数。
问题三:101-102=1,怎么样移动1个数字,才能够使等式成立?
分析:这个问题的解决要依靠良好的数感和较好的计算能力。从这个减法算式的差入手考虑,只有数字1显然无法移动,被减数移动任何一个数字都比减数小,减数等于被减数减差即100,102可以将2缩小移至右上角,10的平方等于100。通过这个问题看以看出小学阶段数学教学应关注对于学生数感的培养,数感依赖于敏锐的观察能力,观察是一种有目的、有计划、有积极思维参与的比较持久的感知活动,它是思维的门户。任何一个数学问题都包含一定的数学条件和关系,要想解决它,就必须依据问题的具体特征,对问题进行深入、细致、透彻的观察,然后认真分析,透过表面现象考察其本质,才能对问题有灵敏的感觉、感受和感知的能力,并能作出迅速准确的反应。
问题四:小学阶段负数的应该怎样读?
分析:义务教育阶段从第二学段开始学生认识负数,《数学课程标准》对于这部分内容的具体目标是:“在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。”以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础。在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。因此负数在生活中的意义、如何规范的读写负数在小学阶段也十分重要。读法:在所读数的前面加上“负”,写法:在所写数的前面加上“-”,需要注意的是不可以讲负数的读法和它所表示的意义混淆,这一点给学生需要特别强调。例如:-3层,读作负3层,表示地下3层。
问题五:时间的写法有哪些?
分析:小学阶段表示时间的方式可以用时分秒来表示,也可以用它电子表的形式来表示。这里需要注意的是要区分所讲的时间究竟是“经过的时间”还是“时刻”。时刻表示的是时间的某个特定的时间点,比如:某列火车于下午2:30分到达北京站,这个2:30就是火车到达的时刻;时间则是表示时间的时长,比如,某列火车上午7:30从上海站出发,于15:30到达北京站,那么,这趟火车从上海到北京所需要的时间是8个小时,即从7:30起算到15:30止,这段时长(时间)是8个小时。时刻有两种表示方法,时分秒和电子表形式,经过的时间只能用时分秒的形式表示。其实,从中文在字面也很好地表达了这两个概念的不同:时刻——表示时间的某一刻(被固定的节点),而时间——表示从始至终的一段间隔。
问题六:分数分为真分数、假分数和带分数?
分析:分类要考虑遵循的原则,分类后的对象既不重复,不遗漏。分数的分类的一个标准就是“分数与1的关系”。有小于1,大于等于1两类。也即是真分数与假分数。这一标准已涵盖所有可能的分数,显然带分数就不能另为一类,它是大于1的,与假分数存在包含关系,如果硬做划分就会出现对象重复。分数分两类(真分数和假分数),带分数只是假分数的另一种表示形式。
Ⅸ 怎么整理数学知识点.
一些重要的概念例题整理下课,还有老师上课板书上的重点
Ⅹ 如何高效整理数学错题
1、关于分门别类
数理化中最省事的办法是按照教课书中的目录结构来制定,科学性和针对性都有了,但其中难度也大了不少。
(1)很多记错工作是由家长来承担的,这就意味着家长在把握错题所属类别时易出现偏差。尤其孩子住校的情况下,错题分类会让大部分家长力不从心。
解决方法:要求孩子在标记错题时,标记相关知识点。这样做的好处是,孩子要标记知识点,就必须重新阅题。
(2)许多题目都是综合了几个知识点形成的,其分门别类以产生错误的知识点为依据,当然学生在标记知识点时也要遵循这个原则。
2、关于抄题内容
除了原题和正确答案以外,最重要最醒目的应该是错误根源。在进行某项学习习惯养成(如获取题目关键字词)时,错题根源也可以作为错题分类的依据,当然这对家长的要求较高。
在孩子进行课外辅导或家教补课时,错题本作为针对性教学的首要依据要在第一时间提供给授课者。这有助于老师有的放矢地讲授知识和学习方法,真正达到一对一的效果。
同分门别类一样:错误根源也是在孩子标记错题时注明。
3、关于记错时机
记错理论上当然是越早越好,在孩子记忆最清晰的时候完成记错,内容会更加完整精确。在实际操作中,高年级的孩子往往没有时间和精力来记错,作为援兵的家长,记错时机就显得不是十分突出。
最为重要的一点,是提醒孩子尽快完成对错题的标注,最好是当天完成前一天的标注,以一周做为记错周期也可以,效果稍差一些,当然前面说到的知识点、错误根源是必须滴。
4、关于记错手段
(1)手工记错。有相当多的学校都要求孩子建立了记(纠)错本,用来整理错题。就调查来看,这种理想状态的记错方式,大多孩子无法坚持下来,即使记错,也往往是三天打渔,两天晒网。
主要原因在于记错时间成本过高,尤其是在高年级,图形图画题目增多,几乎95%的孩子和家长难以坚持下去。
(2)软件记错。目前专门针对记错的软件有几个,但质量参差不齐,广大家长可以网络/谷歌"错题本软件"来查找相关资料,综合评估自己的具体需求。
软件要求必须实现非常高的记错效率,能够重新生成纸质试卷、输出资料,甚至能够评估不同题型、出错原因等内容,这样可以更真实地检验学生对错题涉及知识的理解程度。