‘壹’ 初一数学知识要点有哪些
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
对顶角的性质:对顶角相等。
三、垂直
1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b
垂直是相交的一种特殊情形。
2、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4、空间的垂直关系
四、平行线
1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b
2、 “三线八角”:两条直线被第三条直线所截形成的
① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。
② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。
3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、 平行线的判定方法
① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④ 平行于同一条直线的两条直线平行;
⑤ 垂直于同一条直线的两条直线平行。
5、 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补。
6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。
五平移
1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的
2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置。2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。3、 “数对”表示位置,易错的是(x,0),(0,y)。4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加。2、 计算方法:(1)、分母不变,分子和整数相乘。 (2)、当分母和整数可以约分时,要先约分。二、分数乘分数1、意义:就是一个分数的几分之几。2、计算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能约分的要约分,再计算。三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用。2、应用运算律简便计算。四、倒数1、乘积是1的两个数互为倒数。2、求法:把数的分子和分母的位置颠倒。3、1的倒数就是1本身,0没有倒数。五、解决问题1、求一个数的几分之几。列式:标准量×几分之几2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几。列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系。 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份。2、 分数除以分数,表示b/a中有多少个d/c。3、 整数除以分数,表示a中有多少个c/d。二、 计算方法:除以一个数等于乘这个数的倒数(0除外)。三、 分数除法的意义与整数除法相同,都是乘法的逆运算。四、 分数混合运算顺序,简便算法。五、 解决问题1、 甲数是乙数的几分之几。列式:甲/乙。2、 乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。乙数=甲数÷几分之几。3、 甲数比乙数多(或少)几分之几。列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几。标准量:“比”字后面的为标准量。4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。1、 在a:b中,a叫比的前项,b叫比的后项。2、 比与除法和分数的关系。a:b=a÷b=a/b。3、 求比值两项的单位名称要统一,比值是一个数,没有单位。4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数。(2) 无分数,前项和后项都除以最大公约数。(3) 有小数,可先化为整数或分数。6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动。1、 圆心,用o表示。2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。4、 半径和直径的关系。5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数。2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径。三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积。3、环形面积公式S=πR2-πr24、扇形、弧、圆心角。5、在周长一定的情况下,圆的面积最大。在面积一定的情况下,圆的周长最短。6、 确定起跑线的位置。 第五单元百分数1、 百分数的写法。百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几。3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。4、 百分数与分数、小数的互化。百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数。5、解决问题①、达标率,发芽率的公式。(甲占乙的百分之几。)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几。确定单位“1”。③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十。折扣问题求实求一个数的百分之几是多少的问题。7、纳税。①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税。②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入。8、利率。①、存款的好处。②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息)。 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。3、 利用扇形统计图计算分析。二、 合理存款1、 教育储蓄。2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题。
‘贰’ 初一数学知识点总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
平面直角坐标系
1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
3.原点的坐标是(0,0);
纵坐标相同的点的连线平行于x轴;
横坐标相同的点的连线平行于y轴;
x轴上的点的纵坐标为0,表示为(x,0);
y轴上的点的横坐标为0,表示为(0,y)。
4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
5.几个象限内点的特点:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)关于原点对称的点是(—x,—y);
(x,y)关于x轴对称的点是(x,—y);
(x,y)关于y轴对称的点是(—x,y)。
7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;
点P(x,y)到y轴的距离是︱x︳。
8.在第一、三象限角平分线上的点的坐标是(m,m);
在第二、四象限叫平分线上的点的坐标是(m,—m)。
不等式与不等式组
(1)不等式
用不等号(,≥,≤,≠)连接的式子叫做不等式。
(2)不等式的性质
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
(3)一元一次不等式
用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。
(4)一元一次不等式组
一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。
点、线、面、体知识点
1.几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
2.点动成线,线动成面,面动成体。
点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:
(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
角的种类
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。
正数和负数
⒈、正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2、具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:—8℃
3、0表示的意义
(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;
(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:
(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数
1、有理数的概念
(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)
(2)正分数和负分数统称为分数
(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
③整数也能化成分数,也是有理数
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。
一、一元一次不等式的解法:
一元一次不等式的解法与一元一次方程的解法类似,其步骤为:
1、去分母;
2、去括号;
3、移项;
4、合并同类项;
5、系数化为1
二、不等式的基本性质:
1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;
2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
三、不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。
四、不等式的解集:
一个含有未知数的不等式的所有解,组成这个不等式的解集。
五、解不等式的依据不等式的基本性质:
性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,
性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,
性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,
常见考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性质。
误区提醒
忽略不等号变向问题。
初中数学重点知识点归纳
有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的'指数构成的。
多项式
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
提高数学思维的方法
转化思维
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。
创新思维
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解
要培养质疑的习惯
在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。
在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。
有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:①整数②分数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
一、知识梳理
知识点1 :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2 :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3 :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4 :绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5 :相反数的概念:
(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6 :有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7 :有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8 :有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9 :有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10 :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
‘叁’ 初一数学重要知识点总结
初一数学是整个初中数学的基础,初一时期数学的重要知识点有哪些呢?接下来是我为大家带来的初一数学重要的知识点 总结 ,供大家参考。
初一数学重要知识点总结:有理数
知识概念
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0?a+b=0?a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
初一数学重要知识点总结:整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的 方法 ,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
初一数学重要知识点总结:一元一次方程
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价-成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
‘肆’ 初一数学知识点归纳总结
要想学好数学,同学们一定要学会归纳和总结知识点,方便后期系统的复习,接下来我给大家总结归纳初一数学重要知识点,供参考。
1.方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。
2.一元一次方程
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(3)等式的性质
①等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b
那么a+c=b+c
②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b
那么有a·c=b·c或a÷c=b÷c(c≠0)
③等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
3.解方程式的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1。
1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7.由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
5.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
1.整式:整式为单项式和多项式的统称。
2.整式加减
整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。
(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内的符号与原来相同。
如果括号外的因数是负数,去括号后原括号内的符号与原来相反。
(2)合并同类项:
合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。
3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
4.多项式:由若干个单项式相加组成的代数式叫做多项式。
5.同底数幂是指底数相同的幂。
6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加
7.幂的乘方法则:幂的乘方,底数不变,指数相乘。
8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
9.单项式与单项式相乘
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
10.单项式与多项式相乘
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
11.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
12.同底数幂的除法:同底数幂相除,底数不变,指数相减。
13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。
‘伍’ 初一数学的知识点归纳
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初中 一年级数学 上册知识点
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
初一下册数学知识点
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念 总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
初一下学期数学知识点
相交线与平行线
一、知识网络结构
二、知识要点
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
与互为邻补角。+=180°;+=180°;+=180°;
+=180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
=。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,====90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
的两个角叫同位角。图3中,共有对同位角:与是同位角;
与是同位角;与是同位角;与是同位角。
②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
初一数学第一章知识点相关 文章 :
★ 初一数学上册第一章知识点归纳
★ 初一数学上册第一章知识点总结
★ 初一数学第一章知识点总结
★ 初一数学第一章知识点总结归纳
★ 初一数学重要知识点总结
★ 初一数学上册知识点归纳
★ 初一数学第1章有理数知识点总结
★ 七年级数学上册知识点总结第一章
★ 初一数学第一单元知识点归纳
★ 初一数学上知识点