1. 数学与数学应用这个专业怎么样
数学专业,在大众化的眼光看来,毕业后的就业前景无非是当老师或者搞科研,似乎太古板且就业道路狭窄。然而,这些都是偏见,数学专业毕业的研究生早已是金融界、IT界、科研界的“香饽饽”,数学专业的就业前景有你看不见的“前途似锦”!
在大学的数学学院里,除了基础数学专业外,大多数还设置了应用数学、信息与计算科学、概率与统计精算、数学与控制科学等专业。这些现代数学的分支超越了传统数学的范畴,延伸到了各个社会领域,以数学为工具探讨和解决非数学问题,为人类社会发展做出了巨大的贡献。当然,这些专业的学生也受到了各个相关领域的欢迎。
基础数学:适合做研究或从事教学
基础数学又叫纯粹数学,即按照数学内部的需要,或未来可能的应用,对数学结构本身的内在规律进行研究,而并不要求同解决其他学科的实际问题有直接的联系,只是以纯粹形式研究事物的数量关系和空间形式。
基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法。微分几何、数学物理、偏微分方程等都属于基础数学范畴。人们耳熟能详的陈景润证明“1+2”哥德巴赫猜想的故事就发生在这个领域。
●就业前景
该专业需要学生具备扎实的数学理论基础,为高等院校和科研机构输送数学、应用数学及相关学科的研究生。前几年相对于数学学科其他几个专业来说,就业面相对狭窄,但是这几年各门与数学相关的学科发展迅速,这方面所需要的研究和教学人才的数量也大大增加,尤其是与数学相关联学科的教学人才大多数需要扎实的基础数学基础,因此需求量也增多了。
计算数学:涉及众多交叉学科
计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。
专业背景:要求考生具备基础数学、应用数学、信息技术、计算机科学、数据处理和系统分析,工程学、以及数字图像等学科知识。
研究方向:工程问题数值方法、发展方程与动力系统的数值方法、数值逼近与数字图像处理、计算机图形学与计算机软件、光学与电磁学中的数学问题等。
●就业前景
站在数学的肩膀上,这个方向的同学考博或出国占极大优势。研究生毕业如果从事程序开发工作,薪水一般较高,但工作强度也相对较大。
另外,这个专业的毕业生还可到各大高校从事教学工作,既可以进一步开展研究,也为培养专业人才作贡献。
概率和统计:政府部门需求量大增
作为数学的分支,概率学是研究随机事件的一门科学技术,涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。统计学是关于收集、整理、分析和解释统计数据的科学,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。
概率论与数理统计是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。随着人类社会各种体系的日益庞大、复杂、精密,计算机的广泛使用,概率统计的重要性将越来越大。
●就业前景
主要到企业、事业单位和经济、政府管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作。就业机会非常广泛,一些金融部门和单位对统计学专业人才的需求甚至已经超过了一些热门的经济学专业。尤其是近年来,政府部门决策强调科学性,统计部门的力量增大,因此每年政府招收公务员时,对统计方面的毕业生需求也大增。
应用数学:发展空间最广阔
应用数学包括两个部分,一部分就是与应用有关的数学,另外一部分是数学的应用,即以数学为工具,探讨解决科学、工程学和社会学方面的问题。应用数学主要是应用于两个领域,一是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发;二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。
应用数学与纯数学最大的区别就是与实际的结合:设法解决自然现象与社会发展提出的数学问题,并将其探讨结果应用回到自然界与社会中去。
●就业前景
无论是进行科研数据分析、软件开发、三维动画制作,还是从事金融保险、国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。该专业毕业生的就业去向也大多集中在与信息产业相关的各大集团公司、科研设计单位、金融机构等,并且在出国或深造上也有很大的优势。据相关人士介绍,如果本科学应用数学,报考硕士时选择发展方向时就有很大优势,尤其是金融与经济比本专业毕业生有大的优势,也能向更高层次发展。
数学教育
●就业前景
需求大,待遇稳定
就业分析:我国数学教师需求量最大。数学教师十分抢手。拓宽师资渠道,面向社会招聘教师,已成为教育人事制度改革的重要举措。这无疑为数学教育专业毕业生就业提供了很大的发展空间。
2. 现代数学包括哪些分支分别在什么阶段学习
现代数学的三大分支是:代数、几何、分析。数学的定义是研究集合及集合上某种结构的学科,是形式科学的一种,集合论和逻辑学是它的基础,证明是它的灵魂。由于它与自然科学尤其是物理学关系极为密切,有时数学也被归为自然科学六大基础学科之一。数学中未被定义的概念是集合,其他的一切都是有定义的。数学的标准形式是公理法,即给集合和集合上的某结构下一组公理,其他的一切理论都由这组公理推导证明而来。集合上的结构就是定义在几何元素或子集之间的一些关系,原始分为三类:描述顺序关系的序结构,描述运算关系的代数结构,描述临近关系的拓扑结构,这些结构可以互相结合成为其他一些复杂的结构,比如几何结构,测度结构等等。由这些结构构造出来的各种集合或者说空间,就是不同数学分支研究的内容。代数学研究具有若干代数结构的集合,比如群、环、体、域、模、格、线性空间、各种内积空间等等,这些结构最初都是由初等代数,或者说初等数论和方程式论的研究中抽象出来的。代数学包括:初等代数、初等数论、高等(线性)代数、抽象代数(群论、环论、域论等)、表示论、多重线性代数、代数数论、解析数论、微分代数、组合论等等。几何学研究具有若干几何-拓扑结构的集合,比如仿射空间、拓扑空间、度量空间、仿射内积空间、射影空间、微分流形等。最初是由欧氏几何发展而来。几何学包括:初等(欧氏综合)几何、解析几何、仿射几何、射影几何、古典微分几何、点集拓扑、代数拓扑、微分拓扑、整体微分几何、代数几何等等。分析学研究带有若干拓扑-测度的集合,以及定义在这些集合上的函数空间比如可测-测度空间、赋范空间、巴拿赫空间、希尔伯特空间、概率空间等等,由微积分发展而来。分析学包括:数学分析、常微分方程、复变函数论、实变函数论、偏微分方程、变分法、泛函分析、调和分析、概率论等等。
3. 数学组成是什么意思
数学组成是什么意思
数学结构
数学结构(mathematical
structure)亦称关系结构,简称结构.现代数学的一个基本概念.各种数学对象的统称.它是对于各种数学对象,例如,有序集、线性空间、群、环、拓扑空间、流形等,用集合和关系的语言给出的统一形式.结构由若干集合,定义在集合上或集合间的一些关系,以及一组作为条件的公理组成.随着数学的发展,不断出现许多新的数学分支,这些分支有其各自的研究对象,独特的方法,独自的语言.另一方面,数学不同领域的方法和思想的互相渗透,建立了现代数学的共同逻辑基础(数理逻辑)、共同的基本概念(集合)和共同的方法(公理化方法).法国布尔巴基学派采用全局观点,着重分析各个数学分支之间的结构差异和内在联系,他们认为数学的基本结构有三种,称为母结构:
1.代数结构.由集合及其上的运算组成,如群、环、域、线性空间等.
2.序结构.由集合及其上的序关系组成,如偏序集、全序集、良序集.
3.拓扑结构.由集合及其上的拓扑组成,如拓扑空间、度量空间、紧致集、列紧空间等.
通过以上三种母结构的变化、复合、交叉形成各种数学分支.
4. ‘现代全部数学分支’有哪些
希尔伯特的23个问题
希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是着名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1. 连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是着名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2. 算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大网络全书》数学卷指出,数学相容性问题尚未解决。 3. 两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4. 两点间以直线为距离最短线问题 此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大网络全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的 这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性 1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0 ,1,和任意代数无理数β证明了αβ 的超越性。 8.素数问题 包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律 该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10. 丢番图方程的可解性 能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。 11. 系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。 12. 将阿贝尔域上的克罗克定理推广到任意的代数有理域上去 这一问题只有一些零星的结果,离彻底解决还相差很远。 13. 不可能用只有两个变数的函数解一般的七次方程 七次方程 的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。 14. 证明某类完备函数系的有限性 这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。 15. 舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。 16. 代数曲线和代数曲线面的拓扑问题 这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论 的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。 17. 半正定形式的平方和表示 一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。 18. 用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。 19. 正则变分问题的解是否一定解析 对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。 20. 一般边值问题 这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。 21. 具有给定单值群的线性微分方程解的存在性证明 已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。 22. 由自守函数构成的解析函数的单值化 它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。 23. 变分法的进一步发展出 这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。 这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。赞同12
5. 数学的分类和分支
分类:从纵向划分:
1、初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。
2、变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。
3、近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。
4、现代数学:是指20世纪的数学。1900年德国着名数学家希尔伯特(D.
Hilbert)在世界数学家大会上发表了一个着名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。
从横向划分:
1、基础数学(英文:Pure
Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。
2、应用数学。简单地说,也即数学的应用。
3
、计算数学。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。
4、概率统计。分概率论与数理统计两大块。
5、运筹学与控制论。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科
分支:1.算数
2.初等代数
3.高等代数
4.
数论
5.欧式几何
6.非欧式几何
7.解析几何
8.微分几何
9.代数几何
10.射影几何学
11.拓扑几何学
12.拓扑学
13.分形几何
14.微积分学
15.
实变函数论
16.概率和数量统计
17.复变函数论
18.泛函分析
19.偏微分方程
20.常微分方程
21.数理逻辑
22.模糊数学
23.运筹学
24.计算数学
25.突变理论
26.数学物理学
6. 现代数学的主要分支是什么
离散数学(主要是图伦),应用数论(主要用于加解密),高等数学(特别是复利叶变换)