❶ 初中数学几种求概率的方法,可以收藏
一、列表法求概率:列表法的应用场合:当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
二、树状图法求概率:运用树状图法求概率的条件,当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果 ,通常采用树状图法求概率。
概率是度量偶然事件发生可能性的数值。
假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。以X作分母,Y作分子,形成了数值(用P代表)。在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。
❷ 初中数学中的概率怎么计算
您好。P(A)=A所含样本点数/总体所含样本点数。实用中经常采用“排列组合”的方法计算。
❸ 初中数学概率公式
1、概率的加法
定理:设A、B是互不相容事件(AB=φ),则:
P(A∪B)=P(A)+P(B)
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:
。
❹ 初中概率怎么算
概率是初中数学的常考知识点,考题难度不大,但总有一部分同学因为粗心、因为混淆概念等等的小错误就丢了分数。所以下面我整理了相关内容,供大家参考。
1、概率的加法
定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)。
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An。
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1。
推论3: P(A)+1-P(A),A为事件A的对立事件。
推论4:若B包含A,则P(B-A)= P(B)-P(A)。
推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)。
2、乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B);
推广:P(ABC)=P(A)P(B|A)P(C|AB)。
一、列表法求概率
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
二、树状图法求概率
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果 ,通常采用树状图法求概率。
三、利用频率估计概率
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
❺ 初中数学,概率;
(1)第2次拿到红球即“第1次拿到白球,且第2次拿到红球”,概率为 2/3x1/2=1/3
(2)算法一:1-P(两次拿到白球)=1-2/3x1/2=2/3
算法二:P(拿到红球)=P(第1次拿到红球,第2次拿到白球)+P(第1次拿到白球,且第2次拿到红球)=2/3x1/2+2/3x1/2=2/3
综上,第2次拿到红球的概率是1/3,能拿到红球的概率是2/3.
求采纳,谢谢!
❻ 初中数学概率知识点总结
概率是是反映随机事件出现的可能性大小。下面是整理的一些初中概率知识点,希望能给大家带来帮助。
1.科学记数法:把一个数字写成的形式的记数方法。
2.统计图:形象地表示收集到的数据的图。
3.扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4.条形统计图:清楚地表示出每个项目的具体数目。
5.折线统计图:清楚地反映事物的变化情况。
6.确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。
7.不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。
8.事件的概率:可用事件结果除以所以可能结果求得理论概率。
9.算数平均数:简称“平均数”,最常用,受极端值得影响较大
10.中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。
11.众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
1.注意概率、机会、频率的共同点和不同点。
2.注意题目中隐含求概率的问题。
3.画树状图及其它方法求概率。
4.摸球模型题注意放回和不放回。
5.注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。
1.概率的加法
定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)。
推论1:设A1、A2、…、An互不相容,则:P(A1+A2+...+An)=P(A1)+P(A2)+…+P(An。
推论2:设A1、A2、…、An构成完备事件组,则:P(A1+A2+...+An)=1。
推论3:P(A)+1-P(A),A为事件A的对立事件。
推论4:若B包含A,则P(B-A)=P(B)-P(A)。
推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)。
2.乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B);
推广:P(ABC)=P(A)P(B|A)P(C|AB)。