导航:首页 > 数字科学 > 大学数学没答案怎么学

大学数学没答案怎么学

发布时间:2023-07-09 10:56:16

⑴ 大学数学一点都不会怎么办

大学数学一般学的就是那个高等数学,这个还是有一定难度的,最起码要跟着老师的后面把那个笔记都记下来,而且一节课都不能落下,中间可能变化一下就听不懂了,学这个一定要认真

⑵ 怎样学好大学数学

导语:高等数学(也称为微积分,它是几门课程的总称)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。以下是我为大家精心整理的怎样学好大学数学,欢迎大家参考!

一、建立学习目标

大学生的学习比中学生更复杂更紧张,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的学习目标,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番,没有明确的学习目标。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法,渐渐便失去了自控能力。

因此大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你,没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也在不知不觉中与别人比,所以学习的自主性就很重要。

二、调整学习方法

承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的'教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的内容,并能表达出来与人讨论。

从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学习成绩的提高。

三、做好预习和复习

适当的预习是必要的, 通过课前预习,可以对该节内容有一个系统的认识,在头脑中初步形成知识体系的框架,对它所包含的内容做一个总体及全面的了解,这样才能分清主次,使学习有的放矢,如果时间不多,可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这在一定程度上可以帮助你在课堂上跟上老师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与老师讲解的有什么区别,有哪些问题需要与老师讨论。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。

每次课后都要认真复习,这是目前被许多同学容易忽视的学习过程。通过复习——阅读教材、笔记和参考书,以及将课上例题自己再解答一次,应能说出今天讲了哪些内容?重点、难点是什么?自己接受了其中哪些内容?运用知识解决问题的水平如何?还有什么问题,怎样解决(自己思考或与别人讨论)?通常应当用与上课时间相等的时间来复习。

在完成了一个阶段(例如一章)的学习后,应对学过的知识进行归纳和总结,因为知识不可能自动形成有条理的东西存入大脑,要做到系统化、条理化,简单的方法就是将当前学到的内容整理归类,并注意同类知识内部以及和其他类别知识的联系,这样有利于从宏观上、整体上掌握知识。

四、听课,要专心

认真听课,这是个不言而喻的道理。成功的课堂教学不在于是否讲细讲透,而是通过课堂教学把主要思路,重点与难点交代清楚,将部分细节留给学生,为学生留下值得思考的问题,因此学生在课堂上听课时,应当把主要精力集中在老师讲解问题的思路和对于难点的分析上,如果有某些细节没有听明白,不要影响你继续听其它内容。只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。你自己完全能够顺着这个思路将全部细节补足,最后推出结论。

另外,要学好大学数学,一定要学会记笔记。记笔记会使我们听课更专注,也能帮我们有效地进行课外的复习巩固。有些同学不会记笔记,只要是老师讲的,言无轻重、话无巨细,统统照记不误,耳、眼、手忙得不亦乐乎,累得还哪里顾得上同步思考,如果是这个样子,倒还不如不记。课堂笔记没必要追求齐、全、系统。要有选择、有重点地记,特别要记那些有概括性和技巧性的解题方法,常见的、典型的例题。并且要注意解题方法的积累,特别是证明题,因为证明题较抽象,常常感觉无从下手。课后复习时,一定要对笔记进行适当的整理补充。

如果预习得好,那么对哪些该记、哪些可不记,也会更有的放矢。

五、基本训练 反复进行

学习数学,需要做一定数量的题,解题能力首先取决于对基本概念和基本原理的理解与掌握程度。所以,应多下一些功夫掌握基本概念和基本原理,尽可能地多做些题,把基本功练熟练透,但我们不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变,这是提高解题能力的重要途径。另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。

六、认真做作业

做作业的主要目的是熟悉和巩固学习过的知识,而且通过作业能发现自己在知识学习中的不足。由于作业中的问题不一定都能直接套用现成的公式就能解决,因此这是一次理论与实践相结合的过程。必须独立完成作业,不要一旦不会做题就翻看教材中相关例题的解答,甚至照搬。对于实在做不出的题目,应当带着自己的问题和思路与别人讨论,使其最终得到解决(因此建议以寝室为单位成立课程学习小组,便于相互交流和讨论)。无论如何都不要抄袭别人的作业。即使看现成的解答,也要弄懂是怎么做的,为什么这样做,然后自己再独立地做一次。

七、正确对待答疑

学习大学数学过程中,会有各种各样的疑问,思考越深,疑问越多。有疑问是好事,攻克的问题无论大小,积累起来就是“学问”。不思无问,就是瞎混。可以自己发问、自己回答,“冥思苦想”之下的“豁然开朗”,那才真叫“其乐无穷”。也可以问同窗学友。互相切磋,集思广益。

为学生释疑解难是老师的天职,老师安排的答疑值班时间,是你应该充分利用的宝贵资源(每学期在理学院教师办公室均有教师答疑值班表公布)。只要是教数学的,随便那个老师都可以问,答疑时,老师可能并不一定给你一个完整的解答,而是给你以提示,让你自己继续思考。有时还需要你要有足够的耐心,认真地按照老师指点,动手预算一下。如果在经过老师点拨后你真的懂了,那当然是最好。否则,没有搞懂就是没有搞懂,不要不好意思多问,不要担心老师会不耐烦。老师一定会给你第二步引导,第三次启发。直到完全弄懂为止。

八、课外阅读

尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。看参考书有两种方式,第一种方法是精读某一本书,实践证明,在老师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其他参考书就会迎刃而解了。第二种方法是以问题为中心,有选择地阅读参考书,具体地说就是:如果你在大学数学的学习中的某一部分,或者某个问题有兴趣,希望多了解一些,作比较深入的研究,那么可以查阅几本书,看一看其他书上对这个问题是怎样论述的,自己可以做一个小结,这也是培养自己自学能力的一种重要方式。

好的辅导书可以帮助我们学好大学数学,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高自己解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。(这里,每位学生应认真阅读我们特意为学生编写的数学教学辅导书。辅导书指出了各章节要点,对内容作了小结,并附了大量典型题。完成这本书上的课外自测题,对理解和掌握大学数学各章重点内容有非常好的效果。)

⑶ 大学数学专业应该怎么学才好

数学专业的课程,其特点是需要理解而又不需要做实验的基础课程。很多大学生都觉得难学,为此,以下是我分享给大家的大学数学专业的学习方法的资料,希望可以帮到你!

大学数学专业的学习方法

首先,要认真听课。上课集中精神,跟教师的思路走。那怕后来发现教师的思路出错了,也有收获。不要主观认为教师应该如何讲课,不要用中学教师的标准判断大学教师。当然,大学教师良莠不齐,有些教师的课确实不值得听。但学生不宜过早的下这种判断。只要要认真听课10学时以上,再判断是否值得听。一般而论,低年级的课程,值得听的比较多。

其次,认真阅读教材,还有教师讲课用的ppt。在中学,课后不认真阅读教材也不是种好的学习习惯,虽然用题海战术或许能使这种习惯不影响考试成绩。在大学,不阅读教材很难考出好成绩。特别要注意教材和课件中的例题,无论教师是否在课堂上讲解过。课前预习下教材也是种很好的学习习惯,对考出好成绩有帮助,但未必是必须的。

最后,可能也是最重要,认真做习题。一般来说,教师留作业的题目全部弄懂,包括问过老师或同学后确实懂了,考试就可以80分以上。有题目做不出需要讨论或请教是正常的,但绝对不能抄作业。如果要考90分以上,还应该选作些书上比所留作业更难的题目。

总的讲,大学里的考试都比高中阶段的容易,或许刚开始还没有适应时的小考是例外。与高中更看重成绩相对排名不同,大学的排名在评奖学金等方面也重要,但更重要的是绝对成绩。成绩的学时加权平均成为所谓积点,在以后出国申请奖学金等方面都很重要。

大学数学专业的学习建议

首先,听中国教师上课。教师的讲解总是重要的,特别是对于低年级的入门性课程。上大学交学费,却不用教师的资源,显然不是明智的选择。与中学听课更侧重解题方法不同,大学的数学课程更应该听教师的分析思路和概念解释。为有更好的听课效果,课前应简单预习,了解要讲的大致内容;课后要复习。特别注意理论的完整性。多数数学课程在具有不同尺度上的理论体系。全部数学课程是个体系,每门课程又是个子体系,课程中每章又自成体系,而教师组成材料时往往让每次课也有一定的完整性。

其次,做俄国习题集的题目。想要学好数学,必须多做练习。完成教师布置作业后仍有余力,应该把教材上比作业难的题目也都做了。在此基础上,我建议从俄国的习题集中找题目做。这出于两方面的考虑。其一,俄国的数学教学体系与中国的很接近,更准确地讲现在中国的教学体现主要是因袭俄国的,因此比较便于与课堂教学同步练习。其二,俄国很多教材没有习题或仅有很少的练习,因此必须配套专门的习题集;往往是一本习题集要配不同的教材,所以习题集的内容很丰富。当然,俄国习题集的缺点是题目太大有些是比较机械的重复性练习。最好有内行指点使用。

第三,阅读英文教材。真正的数学概念是超越语言的,因此用不同的语言思考数学问题,有助于理解的深入。一般而言,阅读英文比中文吃力,因此教材更要精选。不仅要阅读教材,而且要完成练习,这样可以检验理解程度。或许与课堂教学同步阅读英文教材不太现实,不仅是时间有限,而且教学体系差别比较大。可以学完门课程后再读英文教材。英文教材需要精选,下次再专门详细谈。

最后,课程之间打通。前面说过,全部数学课程构成个理论体系。要学好的不仅是每门课程,而且是要把各门课程融会贯通。各门课程的分别仅是为教学方便的侧重不同,彼此之间还是有联系的。例如,数学分析课程中多元曲线和曲面积分用得都是Riemann积分,而在实函数论中将学习Lebesgue积分以及其它抽象积分,这时就应该思考曲线和曲面Lebesgue积分的性质与用途。再例如,高度代数中讲线性空间都是有限维,泛函分析中引入无限维空间,两者的异同也很值得推敲。

学好大学数学专业应完成的题目

第1种,两卷本Introction to Calculus and Analysis (Vols. 1,2) by Richard Courant and Fritz John。该书1974年由John Wiley and Sons作为Interscience系列初版,1989年由Springer-Verlag作为Classics in Mathmatics重印。2000年的重印本被世图公司2008年在大陆发行。该书由汉译本,收入“数学名着译丛”。该书的内容与国内数学分析基本接近,但还包含线性代数、微分方程、变分法和复变函数的导论性内容。作者Courant是应用数学的大师,Fritz John也是偏微分方程方面的顶级专家。该书可以在学过数学分析后阅读。

第2种,Finite-Dimensional Vector Spaces by Paul R. Halmos。该书1942年作为Annals of Mathematics Studies丛书的第7种由Princeton University Press出版。修改后的第2版1958年由Van Nostrand出版,1974年由Springer-Verlag出版作为Undergraate Texts in Mathematics丛书中的一种,国内出版了盗印本。2008年世图公司出版在大陆发行了Springer-Verlag的1987年重印本。作者Paul R. Halmos或许不是一流的数学家,但毫无疑问是一流的数学教育家和教科书作者。该书强调有限维空间与无限维空间的联系。因此,不仅是线性代数的复习,也是泛函分析的初步导引。该书可以在学过线性代数后阅读。

第3种,Differential Equations, Dynamical Systems, and Linear Algebra by Morris H. Hirsch and Stephen Smale。该书1974年由Academic Press出版,有高教版的汉译本。2004年由Elsevier出了新版Differential Equaitons, Dynamical Systems, and An introction to Chaos by Morris H. Hirsch, Stephen Smale and Robert L. Devaney,新版本于2007年由世图公司在大陆发行,后来又有人民邮电出版社的汉译本。虽然新版中有些更时髦的内容,但线性代数的内容有所消弱。我个人更偏爱旧版。Smale是当代大师级的数学家,Hirsch也在顶级数学家之列。该书内容基本涵盖国内高度代数和常微分方程两门课程,但在某些方面论述的更为深刻。该书可以在学过常微分方程后阅读。

第4种,Complex Analysis by Lars V. Ahlfors。1979年McGraw-Hill出版该书第3版,有上海科技出版社的汉译本,2004年机械工业出版社在大陆发行影印本。作者Ahlfors是大师级的数学家,曾获Fields奖(1938)和Wolf奖(1981)。该书选材精练、论证严谨,有些内容的处理别具一格。有些习题,但不算很多。该书可以在学过复变函数后阅读。

第5种,A Survey of Modern Algebra by Garrett Birkhoff and Saunders Mac Lane。该书于1941年由Macmillan出了第1版,多次修订再版,到1976年出了第4版。第4版大陆有当年光华出版社的盗印版,并有高教的汉译本。1998年由A K Peters出了第5版,2007年人民邮电出版社在大陆发行了第5版。该书内容丰富,几乎涵盖本科水平的全部代数内容,而且从统一的观点组织材料。该书可以在学过抽象代数后阅读。

第6种,Principles of Mathematical Analysis by Walter Rudin。该书1976年McGrawhill出了第3版,并有高教出的汉译本。2007年机械工业出版社在大陆发行了重印本。该书内容比国内的数学分析课程多,还包括属于拓扑学的度量空间的拓扑和属于实变函数的Lebesgue积分,特别是有流形上积分的简明导论。Rudin写过多种分析教材,但都不是本科生程度的。该书论述简明扼要,习题量比较大,而且有些题目很难。该书应该在学过实变函数后阅读,但不用等学完拓朴学。

猜你喜欢:

1. 大学数学学习方法介绍

2. 学习大学数学的心得

3. 大学为什么要学数学

4. 数学教育理论学习心得

5. 大学数学为什么这么难

⑷ 大学数学怎么学学好大学数学的8个方法

进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,我整理了数学学习相关内容,希望能帮助到您。

学好大学数学的8个方法

1)大一生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上不错的本科,就说明自己在学习上有一套。自己高中怎样学,大学还怎样学,就一定能成功。不知道改进学习方法的必要性。

2)缺少迎难而上的思想准备。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。

3)对大学课程的学习特点,缺少全面准确的了解。对大学生应该掌握的学习方法,缺少系统的学习和掌握。

提高大学数学学习成绩的关键:

大学生学数学,靠的是一个字:悟!

借助这8个方法,教你更好领悟高数

1

先看笔记后做作业

有的学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

2

做题之后加强反思

现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。

要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。

3

主动复习和总结

进行章节总结是非常重要的。

怎样做章节总结呢?

①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。

②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。

③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。

④把重要的,典型的各种问题进行编队。

⑤总结那些尚未归类的问题,作为备注进行补充说明。

4

重视改错,错不重犯

一定要重视改错工作,做到错不再犯。

5

积累资料随时整理

把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

6

精挑慎选课外读物

大学数学考的是学生解决常规题的能力。作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

7

配合老师主动学习

大学生必须提高自己学习的主动性,随时预防挂科。

8

合理规划步步为营

大学的学习表面上是轻松的,实则是暗藏危机。没有了高中老师的步步紧抓,许多自制力差,又没计划性的学生任由自己堕落。所以,要想能迅速取得进步,就要给自己制定一个较长远的切实可行的学习目标和计划。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

大学数学怎么学?

众所周知,数学是一门富有魅力又极具挑战性的学科。有些时候,花了大量的时间,但还是没有什么结论或是还是理解不了一些过程,而且,往往会有一种挫败感——为什么别人想的到而我想不到。可见,学好数学绝不是一件易事,需要付出大量的努力,需要大量的积累和细心体会。但是,大家也不必太过害怕或是灰心,要相信,只要付出了努力,只要有不断地、耐心地思考,一定能够理解好所学内容,能够解决问题。

对于刚入学的新生,要面对的专业课就是数学专业中基础中的基础:数学分析、高等代数和解析几何,正好对应数学的三大核心领域:分析、代数、几何。

数学分析是指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。在学习这门课程时,既需要感觉和直觉去分析理解问题,又需要严密的证明来说明你的观点。刚接触时,由于和高中的思维方式有很大不同,可能会有无从下手的感觉,但多看例题,反复练习,慢慢就会熟悉理解。

高等代数主要研究线性空间、线性变换和多项式理论等。通过引入向量、矩阵、行列式等工具,在一般的集合上研究问题,并将抽象的线性变换视为成更实际的矩阵进行研究。这是一套严密完整的理论,全部学完后,你将看到它完整的面目。在学习时,要注意将知识融会贯通,形成一个整体,一套体系。

解析几何在大一学的不多也不难,多用线性代数方法研究。

数分和高代是数学专业中的基础,需要高度重视,学到高年级的课程时,会发现有一些内容和数分高代的内容相近或是类似,如果一开始没好好学,后面会越学越辛苦。

学习数学必须要多思考,要多想想一个定理是怎么引入的,为什么需要这些条件,缺了某一个条件会有什么后果,多记一些例子,尤其是反例,再想想看如果不看证明,自己能不能证明出来。多研究例题,看看人家是怎么想的,思考为什么别人能想到,有什么地方可以找到突破口,要积累。多做题,多做好题,注意老师课堂上讲的题目和勾出来的题目。

在大学期间,也会有数学竞赛,主要的有:全国大学生数学建模竞赛(国赛)、美国大学生数学建模竞赛(美赛)、全国大学生数学竞赛(数学竞赛)、丘成桐大学生数学竞赛(丘赛)。对自己的数学实力有自信的,或是想要挑战一下自己的同学可以考虑参加这几个竞赛,检验一下自己。

要学好数学需要多读书,要扩大自己在数学领域的知识面,才会有更加深入的体会和了解。故在此推介一些适合数学专业的同学看的书,希望对大家有所帮助。

数学分析

1. 基础教材

(1)数学分析 陈纪修 复旦大学出版社

(2)数学分析 华东师范大学出版社(没有复旦的版本好,当作基础中的基础,全部掌握文本内容和习题即可)

(3)数学分析教程 常庚哲(较难)

2. 参考书

(1)微积分学教程 菲赫金哥尔茨(非常详细,可作数学分析“词典”用,若要顺序读下来可能比较耗时)

(2)数学分析 卓里奇(观点比较高级,建议高年级时或觉得自己学得很清晰的同学阅读)

(3)数学分析讲义 陈天权 (视角非常高,建议较高年级时阅读)

(4)数学分析原理(Principles of Mathematical Analysis) Rudin (比较全面的经典教材,写得比较简练,可以学完后看)

(5)陶哲轩实分析 陶哲轩 (从最基础写起,可以当作课外读物)

(6)重温微积分 齐民友 (可以学得差不多时作为回顾)

(7)数学分析新讲 张筑生

(8)数学分析全程辅导及习题精解

3. 习题

(1)数学分析习题课讲义(上下册) 谢惠民等 (很好的习题集)

(2)数学分析中的典型问题与方法 裴礼文 (很好的习题集,慢慢做不必着急)

(3)吉米多维奇数学分析习题集(1—6)(题目以计算为主,可以选取里面的计算题作为对自己计算能力的检验,不要刷题,挑取类型题做熟练就行)

高等代数

1. 参考书

(1)高等代数学习指导书(上下册) 丘维声 (非常厚的两本书,也非常详细清晰,可作参考)

(2)高等代数简明教程(上下册) 蓝以中 (比较薄,易携带)

(3)高等代数学 张贤科、许甫华 (相比以上较难,但非常全面,有一些知识在高等代数课上并未涉及,可以到这里阅读)

(4)高等代数解题方法 张贤科、许甫华(上本书的配套习题书)

2. 习题集

(1)高等代数习题集(上下册) 杨子胥(比较全面的一本高等代数习题集,可以作参考)

(2)高等代数习题精解 刘丁酉 中国科学技术大学出版社 (较全面)

(3)我院樊启斌老师整理的高等代数习题集非常好,除了该本练习和课后习题,一般不需要再多做题目。

概率论

(1)概率论 何书元 北京大学出版社(轻便而易懂)

(2)概率论教程 钟开莱(均以实变函数知识为基础的概率论,是真正意义上的数学中的概率论,大三的数基与弘毅同学可看)

(3)概率论教程 缪柏其、 胡太忠 中国科学技术大学出版社

数值分析

(1)数值线性代数 北京大学出版社

(2)数值计算方法 武汉大学出版社

常微分方程

(1)常微分方程教程 丁同仁(国内经典教材)

(2)常微分方程习题集 庄万(习题比较多可以参考一下)

(3)高等数学例题与习题集(四)常微分方程 博亚尔丘克(还不错的一本ODE习题集)

(4)常微分方程 阿诺尔德(观点较高的一个经典着作)

复变函数

(1)复变函数简明教程 谭小江,伍胜健(北大教材,条理清晰,可作初次学习用)

(2) Complex Analysis, Stein (非常简练而全面,可作参考书)

(3)实分析与复分析(Real and Complex Analysis), Rudin (经典的西方教材)

(4)复分析(Complex Analysis), Ahlfors(最经典的西方教材之一)

(5)高等数学例题与习题集(三) 复变函数 博亚尔丘克(非常全面的一本复变函数习题集)

实变函数

(1)Real Analysis, Folland(深入浅出,很详细)

(2)Real Analysis, Stein(比较经典的教材)

(3)实分析与复分析(Real and Complex Analysis), Rudin(经典教材,比较概括而全面)

(4)实变函数论,实变函数学习指南 周民强(非常好的国内教材,里面思考题非常多,可以慢慢阅读思考)

泛函分析

(1)泛函分析,江泽坚(非常简明)

(2)泛函分析讲义(上下册) 张恭庆、林源渠、郭懋正(北大教材,比较全面,习题也不错)

(3)Functional Analysis, Rudin(经典教材)

(4)泛函分析(Functional Analysis), Peter Lax(经典教材)

⑸ 大学数学学不会怎么办

认真听课是第一步,因为在课堂上有老师为我们整理思路,并且串讲知识点,同时在课堂上,如果我们遇到问题可以及时提问,困惑的地方得到立即解答,所以认真听课是最高效的学习方法。课堂也拥有着十分利于学习利于思考的氛围。

其次就是做好笔记,无论是自己学习还是在课堂上跟着老师学习,做笔记都能帮助我们加深记忆,整理思路,数学是一个十分考验逻辑思维能力的学科,所以理清思路十分重要,把课本内容整理成笔记其实是一个把外在灌输的知识内化成自己的思想的过程。

首先 与高中数学不同的是,高等数学各种各样的定义证明超级多,课堂上老师讲课速度也超级快。两节课,100分钟,基本上都是老师在讲,而你只能在底下听。因为课时少,加上内容又那么多,老师不得不飞快的讲,所以只要你一旦开小差,就基本没有继续听下去的信心和能力了。

加之,课堂上老师基本不会给你时间消化和练习,而课后自己会不会练习也还得另说。本要在知识内容方面上了一个档次,又不能多加练习,高数也就自然而然成了众多大学生的噩梦。

阅读全文

与大学数学没答案怎么学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:728
乙酸乙酯化学式怎么算 浏览:1393
沈阳初中的数学是什么版本的 浏览:1339
华为手机家人共享如何查看地理位置 浏览:1031
一氧化碳还原氧化铝化学方程式怎么配平 浏览:874
数学c什么意思是什么意思是什么 浏览:1396
中考初中地理如何补 浏览:1285
360浏览器历史在哪里下载迅雷下载 浏览:690
数学奥数卡怎么办 浏览:1375
如何回答地理是什么 浏览:1010
win7如何删除电脑文件浏览历史 浏览:1042
大学物理实验干什么用的到 浏览:1472
二年级上册数学框框怎么填 浏览:1686
西安瑞禧生物科技有限公司怎么样 浏览:931
武大的分析化学怎么样 浏览:1237
ige电化学发光偏高怎么办 浏览:1326
学而思初中英语和语文怎么样 浏览:1635
下列哪个水飞蓟素化学结构 浏览:1414
化学理学哪些专业好 浏览:1476
数学中的棱的意思是什么 浏览:1043