A. 我国近代的数学家取得了哪些伟大的成就
1、姜立夫
姜立夫(1890—1978),数学家,数学教育家。南开大学数学系的创始人。曾任中央研究院数学所所长。
对中国现代数学教学与研究的发展有重要贡献。姜立夫的学术生涯开始于综合几何的研究。
从40年代起,姜立夫的研究课题主要是圆素与球素几何学,逐步整理出一套以二阶对称方阵作为圆的坐标,以二阶埃尔米特方阵作为球的坐标的新方法。
2、熊庆来
熊庆来(1893年9月11日—1969年2月3日),字迪之,出生于云南省红河哈尼族彝族自治州弥勒市息宰村,中国现代数学先驱,中国函数论的主要开拓者之一,以“熊氏无穷数”理论载入世界数学史册。
熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。
1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会,1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。
这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。
3、苏步青
苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国着名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。
他创建了中国微分几何学派,晚年创建开拓了计算几何新的研究方向。
他先后在仿射微分几何、射影微分几何、一般空间微分几何及射影共轭网理论等方面做出了杰出的贡献,创建了国际公认的中国微分几何学派;在70多岁高龄时,还结合解决船体数学放样的实际课题,创建和开始了计算几何的新研究方向。
苏步青的研究方向主要是微分几何。苏步青的大部分研究工作是属于仿射微分几何学和射影微分几何学方向的。
此外,他还致力于一般空间微分几何学和计算几何学的研究。他创立了国际公认的浙江大学微分几何学学派。
4、陈景润
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。
1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》 。
论文的发表,受到世界数学界和着名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。
5、华罗庚
华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
20世纪40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计;对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,三角和研究成果被国际数学界称为“华氏定理”。
在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。
与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。
参考资料来源:网络——苏步青
参考资料来源:网络——熊庆来
参考资料来源:网络——姜立夫
参考资料来源:网络——陈景润
参考资料来源:网络——华罗庚
B. 数学家主要研究什么
数学家主要研究那些百年难题,及其解决方法,为化学、物理的科学研究提供基础。
C. 当代数学研究生、物理研究生、化学研究生研究什么数学家、物理学家、化学家研究什么
他们都研究数学、物理、化学、生物、心理学等思维科学、自然科学、社会科学的理论基本问题、新发现的问题、待解决的问题 …数学?比较纯的数学你去网络“中国科学院数学与系统科学院”进入后选择“招生”,你看“基础数学”下设的招生方向就知道了,比较新的是分形几何、模糊数学等,经典的是实分析、复分析、数论等等 ,而所谓“数学家的研究方向”是没有意义的,因为数学家没有标准定义,它只是个泛泛而谈的概念,有人认为我读到博士我就是数学家了,有人认为我拿了这个奖那个奖还不算数学家,所以你看看研究生的招生方向(正因为导师需要才会招这个方向)还有核心期刊发表的文章就可知道目前的主流方向
D. 你觉得数学家究竟都在研究什么呢
那么,数学家究竟都在研究什么呢?或者说数学是由哪些部分组成的?传统上,我们可以将数学分为两大类:研究数学本身的纯数学和应用于解决现实问题的应用数学。但是这种分类法并不十分清晰,许多领域起初是按照纯数学发展的,但后来却发现了意想不到的应用。许多领域之间也有着非常紧密的关系,因此,如果要精确地为数学分类的话,应该是一个复杂的网络。
而在本文中,我们将会带领读者简单地了解数学的五大部分:数学基础、代数学、分析学、几何学和应用数学。
1.数学基础
数学基础研究的是逻辑或集合论中的问题,它们是数学的语言。逻辑与集合论领域思考的是数学本身的执行框架。在某种程度上,它研究的是证明与数学现实的本质,与哲学接近。
数理逻辑和基础(Mathematical logic and foundations)
数理逻辑是这一部分的核心,但是对逻辑法则的良好理解产生于它们第一次被使用之后。除了在计算机科学、哲学和数学中正式地使用了基础的命题逻辑之外,这一领域还涵盖了普通逻辑和证明论,最终形成了模型论。在此,一些着名的结果包括哥德尔不完全性定理以及与递归论相关的丘奇论题。
2.代数学
代数是对计数、算术、代数运算和对称性的一些关键的概念进行提炼而发展的。通常来说,这些领域仅通过几个公理就可定义它们的研究对象,然后再考虑这些对象的示例、结构和应用。其他非常偏代数的领域包括代数拓扑、信息与通信,以及数值分析。
数论(Number theory)
数论是纯数学中最古老、也是最庞大的分支之一。显然,它关心的是与数字有关的问题,这通常是整数或有理数(分数)。除了涉及到全等性、可除性、素数等基本主题之外,数论现在还包括对环与数域的非常偏代数的研究;还有用于渐近估计和特殊函数的分析方法和几何主题;除此之外,它与密码学、数学逻辑甚至是实验科学之间都存在着重要的联系。
群论(Group theory)
群论研究的是那些定义了可逆结合的“乘积”运算的集合。这包括了其他数学对象的对称集合,使群论在所有其他数学中占有一席之地。有限群也许是最容易被理解的,但矩阵群和几何图形的对称性同样也是群的中心示例。
E. 现代数学研究什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显着特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显着的特征。
高度的抽象性是数学的显着特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显着特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
F. 数学家陈景润一辈子致力于研究一加一为什么等于二,研究这个到底有什么意义
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。
从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
G. 数学家有哪些贡献贡献
欧拉:分析的化身,数学英雄,贡献:《无穷小分析引论》
阿基米德:数学之神,贡献:首次运用极限方法算出了曲面图形的面积
牛顿:贡献:微积分
高斯:数学王子,贡献:复数,最小二乘法
非欧几何之父——罗巴切夫斯基
泛函分析之父——巴拿赫
傅里叶分析之父——傅里叶
现代微分几何之父——陈省身
分形几何之父——芒德勃罗
解析几何之父——笛卡尔
数学成果
中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。这里列举中国近现代数学家的一些重要的贡献。
李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式”。华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与王元提出多重积分近似计算的方法被成为“华—王方法”。
以上内容参考:网络-数学家
H. 现代数学的主要特点及成因
现代数学发展特点
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。
18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。
19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。
1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。
在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换 代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。
另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。
上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。
19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的着名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。
现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。
19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。
拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可