Ⅰ 什么叫偶点,什么叫奇点。
偶点,是指从一个点向外发出的线的条数为偶数。
奇点,是指从一个点向外发出的线的条数为奇数。
下图中,E和F两点是奇点,其余各点都是偶点。
偶点、奇点,是数学家欧拉研究“七桥问题”时用到的概念。他证明了下面命题:
如果在一个图形中,所有的点都是偶点,那么,从其中的任何一点开始,都能完成一笔画;
如果图形中,只有两个奇点,那么,从其中一个奇点开始画,最后可以画到另一个奇点完成一笔画;
如果图形中多于两个奇点,则无法完成一笔画。
Ⅱ 图形中的奇点数怎么找
分析如下:
1、奇数点个数除以2,如果是正好整除,商就是所需要画的笔数,如果不能整除,那么商+1就是所需要画的笔数;
2、这里还有一个隐含的条件就是:图案的端点≤2,这个图有3个端点,所以要增加一笔;
奇点通常是一个当数学物件上被称为未定义的点,或当它在特别的情况下无法完序,以至于此点出现在于异常的集合中。
奇点通常是一个当数学物件上被称为未定义的点,或当它在特别的情况下无法完序,以至于此点出现在于异常的集合中。诸如导数。参见几何论中一些奇点论的叙述。
实数中当某点看似 "趋近" 至 ±∞ 且未定义的点,即是一奇点x= 0。方程式g(x) = |x|(参见绝对值)亦含奇点x= 0(由于它并未在此点可微分)。
同样的,在y=x有一奇点(0,0),因为此时此点含一垂直切线。
一个代数集合在(x,y)维度系统定义为y= 1/x有一奇点(0,0),因为在此它不允许切线存在。
几何学中的奇点
“几何意义上的奇点”,也是无限小且不实际存在的“点”。可以想象一维空间(如线),或二维空间(如面),或三维空间,当它无限小时,取极限小的最后的一“点”,这一个不存在的点,即奇点。
Ⅲ 一笔画是如何判断奇点数的
奇点数:对所给图形,由某个点出发的线段的条数是奇数的。奇数点为2或0,即为一笔画图形。
如果从一个点出发的线条数为奇数,我们就称这个点为“奇点”。这里需要理解:“出发”不等于“经过”,“出发”是指每次都以该点为出发点开始数,如图1所示,从标红点出发的线条有5条,5是奇数,所以该红点是奇点;“线条数”包括直线数和曲线数,如图2所示,从标红点出发的线条有3条,3是奇数,所以该红点是奇点。
一笔画的起源
十八世纪,在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来,那是否可以从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点。七桥问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决,因而形成了着名的“哥尼斯堡七桥问题”。
1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥歼敏尼斯堡七桥后,认真思考走法,但始肢脊终没能成功。
经过一年的研究后氏饥枝,1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。