Ⅰ 简述数学知识的特点
数学知识的特点
1.数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。
2.从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
3.对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
4.事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”
5.另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…·,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…·,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…·,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”
从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。
6.基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛、性,”“5”王粹坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。
综上所述,对数学本质特征的认识是发展的。变化的,用历史的、发展的观点来看待数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,当然,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点:,对数学教学具有重要的指导意义。
关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。
同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。
数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。但是,抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。
数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。当然,形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。
数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。
数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。
欧几里得的几何经典着作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论着都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。
但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。比如,前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。因此,后来又逐步建立了更严密的希尔伯特公理体系。
第三个特点是应用的广泛性。
我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。
而且,几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。当然,力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。
数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。比如,一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。
正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。比如,在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。
下面举几个应用数学的光辉例子。
第一,海王星的发现。太阳系中的行星之一的海王星是在1846年在数学计算的基础上发现的。1781年发现了天王星以后,观察它的运行轨道总是和预测的结果有相当程度的差异,是万有引力定律不正确呢,还是有其他的原因?有人怀疑在它周围有另一颗行星存在,影响了它的运行轨道。1844年英国的亚当斯(1819—1892)利用引力定律和对天王星的观察资料,推算这颗未知行星的轨道,花了很长的时间计算出这颗未知行星的位置,以及它出现在天空中的方位。亚当斯于1845年9~10月把结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是查理士和艾里迷信权威,把它束之高阁,不予理睬。
1845年,法国一个年轻的天文学家、数学家勒维烈(1811—1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812—1910),信中说:“请你把望远镜对准黄道上的宝瓶星座,就是经度326°的地方,那时你将在那个地方1°之内,见到一颗九等亮度的星。”加勒按勒维烈所指出的方位进行观察,果然在离所指出的位置相差不到1°的地方找到了一颗在星图上没有的星——海王星。海王星的发现不仅是力学和天文学特别是哥白尼日尔爾心学说的伟大胜利,而且也是数学计算的伟大胜利。
第二,谷神星的发现。1801年元旦,意大利天文学家皮亚齐(1746—1826)发现了一颗新的小行星——谷神星。不过它很快又躲藏起来,皮亚齐只记下了这颗小行星是沿着9°的弧运动的,对于它的整个轨道,皮亚齐和其他天文学家都没有办法求得。德国的24岁的高斯根据观察的结果进行了计算,求得了这颗小行星的轨道。天文学家们在这一年的12月7日在高斯预先指出的方位又重新发现了谷神星。
第三,电磁波的发现。英国物理学家麦克斯韦(1831—1879)概括了由实验建立起来的电磁现象,呈现为二阶微分方程的形式。他用纯数学的观点,从这些方程推导出存在着电磁波,这种波以光速传播着。根据这一点,他提出了光的电磁理论,这理论后来被全面发展和论证了。麦克斯韦的结论还推动了人们去寻找纯电起源的电磁波,比如由振动放电所发射的电磁波。这样的电磁波后来果然被德国物理学家赫兹(1857—1894)发现了。这就是现代无线电技术的起源。
第四,1930年,英国理论物理学家狄拉克(1902—1984)利用数学演绎法和计算预言了正电子的存在。1932年,美国物理学家安德逊在宇宙射线实验中发现了正电子。类似的例子不胜枚举。总之,在天体力学中,在声学中,在流体力学中,在材料力学中,在光学中,在电磁学中,在工程科学中,数学都作出了异常准确的预言。
Ⅱ 数学有哪些特点
提问者你好。
数学的抽象,在对象上、程度上都不同于其他学科的抽象,数学是借助于抽象建立并发展起来的.数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式.在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别.数学家关心的只是“五”.又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物.“点”被看作没有大小的东西,无长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高地面.实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
有的同学因数学的抽象而感觉数学枯燥、难学,其实“抽象”是数学的武器,是数学的优势.我们应该喜爱“抽象”,在数学的抽象过程中保留量的关系和空间形式,而舍弃其他一切,学会运用“抽象”的手段来解决问题。
Ⅲ 论述数学学科四大特点
,对于数学是几家欢喜几家愁,高分的同学可以达到140多甚至考到满分150分,但是有的同学可能连及格分都达不到。从整体情况来看,每年全国考研数学的平均分一般都是低于及格分的,只有80分左右。那平均分这么低,是不是说明考研数学很难呢?为了解答这个问题,大家就需要知道考研数学的基本特点了。
1、稳定
从每年考试大纲中反映的情况来看,考研统考的三科政治、英语、数学当中,数学的变化情况是很小的。每一年的考点和前一年相比,不论是命题方向还是试题特点上,都是在不断重复的。正是由于考研数学的稳定性,九十年代甚至是八十年代的考研真题与现在的考试试题相比,都没有发生很大的变化。它的稳定性这一特点,对我们考生的复习是很有好处的,因为这表示在新的大纲还没有出来之前,大家完全可以把去年的大纲作为指路明灯去进行复习。
买翡翠先到这里看看,一手货源,原石开料,厂家直供
广告
买翡翠先到这里看看,一手货源,原石开料,厂家直供
2、基础
为什么说考研数学是基础的呢?我们来看一下考试大纲对于考研数学是怎么定义的:考研数学,考查的是考生对基本概念的理解,以及运用数学的基本方法和基本理论,解决数学的基本问题的能力。这一句话充分表达了考研数学考查是每个学科内最基本的内容和最基本的考点,这也说明不需要大家对数学有多么深刻的认识,只需要理解、掌握每个学科内最基本、最简单的内容就可以了,这也是我们考研数学复习的基本方向:以基础为重。其实这也从侧面回答了考研数学难不难的问题,至少从考试大纲反映的情况来看是不会特别难的。
3、综合
这个特点说明虽然考研数学考查的都是很基础的点,但是不会孤立的、分开的去考查大家,而是会把很多知识点融合到一道题目当中去考核大家。题目的综合性一上来,对大家的要求也就很高了。这就要求大家在复习的过程中既要,又要系统,也就是说大家不仅要掌握各个考点,还要理解考点和考点之间的联系,只有做好了这两点,才能有得高分的可能。
4、题量大
考研数学的试卷一共有23道题,考试时间是180分钟,看起来题量不是很大,时间很长,但从每年实际考试的情况来看,能够完完整整做完整套试卷的考生是不超过10%的,绝大部分考生都是有会做但是没有时间做的题目,这样的话就会影响大家最后的成绩了。关于这个问题,没有任何技巧可以避免,大家只能做题,做题,再做题,通过做题加深对知识点的理解,从而提高解题的速度。在考试中做到不但要会,更要快,不但要掌握,更要熟练!
以上就是考研数学的四大基本特点。所谓知己知彼百战不殆,知道了我们要面临的问题,我们才能有针对性的解决办法。考研数学到底怎么复习呢?其实答案就隐藏在这几个基本特点中,概括起来就是:先打好基础,再学会综合应用,最后提高熟练度,加快解题速度。这就是我们复习考研数学的基本方向。
Ⅳ 数学这门学科的特点是什么
数学学科的特点
数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显着的特点:高度抽象,逻辑严密,广泛应用。
1.高度抽象性 .
数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式。在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别。数学家关心的只是“五”。
又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物。“点”被看作没有大小的东西,禾长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高的面。实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
2.严密逻辑性 .
数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。但数学对逻辑的要求不同于其它科学 因为数学的研究对象是具有高度抽象性的数量关系和空间形式,是一种形式化的思想材料。许多数学结果,很难找到具有直观意义的现实原型,往往是在理想情况下进行研究的。如一元二次方程求根公式的得出,两条直线位置关系的确定,无穷小量的得出,等等。数学运算、数学推理、数学证明、数学理论的正确性等,不能像自然科学那样借助于可重复的实验来检验,而只能借助于严密的逻辑方法来实现。
3.广泛应用性 . 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。我国已故着名数学家华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。 这是对数学应用的广泛性的精辟概括。
数学应用的例证不胜枚举,太阳系九大行星之一的海王星的发现,电磁波的发现,都是 历史上数学应用的光辉范例。
数学的这三个显着特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。这些特点也深刻地反映了:实践是数学的源泉,实践应用的需要正是学习数学的目的。
Ⅳ 数学学科有什么特点
1.明确的表述概察袜念
2.抽象
3.理想化
4.有推理方友敬法
5.有独特的符号体系
6.数学的二好没慎元性:归纳+推理=创造