A. 数学的起源
数学起源于公元前4世纪这个时期,这一时期在四大文明古国等地区的数学,主要是研究计数、初等算术与算法。
数学是一门极其重要的学科,可以说数学是现代科技发展的基础,数学在人类历史发展中,发挥着极其重要的作用,那么数学的起源是怎样的呢?下面让我们一起去了解吧。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将宏洞数学定义为“数学是量的科学。”其中“量”的涵义是模糊的核绝宽,不能单纯理解为“数量”。
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符改亮号,其中丨、、、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书·律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。
B. 数学起源于哪里
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法弯差,几何学则可以看作是应用算术。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为念腔目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
学数学意义
学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些埋高皮讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!
掌握数字规律,训练逻辑思维,能训练人们的思维能力.开发脑力.更理性的去认识这个世界.数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题 掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.意义深远!
C. 数学谁发明的
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ?
mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail
B.
Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
D. 数学的由来从哪里开始的
关注
数学的由来:
1、从人类的角度:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
2、从时间的角度:
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数兆悄学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
(4)世界最早的数学出自哪里扩展阅读:
数学的发展史:
1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”
2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研颂猜肢究顺序和度量为目的科学都与数学有关。”
3、在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
5、现代数学已野世包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
E. 数学起源于哪里
数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
人类在蒙昧时代就已具有识别事物多寡的能力.原始人在采集、狩猎等生产活动中首先注意到一只羊与许多羊、一头狼与整群狼在数量上的差异.通过一只羊与许多羊、一头狼与整群狼的比较,就逐渐看到了一只羊、一头狼、一条鱼、一棵树等等之间存在着某种共通的东西(即它们的单位性).当对数的认识变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数.
古代的记数方法:
1. 手指计数:利用两只手的十个手指.亚里士多德指出:十进制的广泛采用,
只不过是我们绝大多数人生来具有10个手指这一事实的结果.
2. 石子记数:在地上摆小石子,但记数的石子堆很难长久保存.
3. 结绳记数:在一根绳子上打结来表示事物的多少.比如今天猎到五头羊,就
以在绳子上打五个结来表示;约定三天后再见面,就在绳子上打三个结,过一天解一个结;等等.
秘鲁的印加族人(印第安人中的一部分)古时(公元前1500年前)每收进一捆庄稼,就在绳上打个结,用来记录收获的多少.
中国古代文献《周易 系辞下》有“上古结绳而治”之说.“结绳而治”即结绳记数或结绳记事.
结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来.宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火.”这是用结草来调发军马,传达要调的人数.
其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法.中央民族大学就收藏着一副高山族的结绳,由两条绳子组成:每条上有两个结,再把两条绳结在一起.
4. 刻痕记数:1937年在维斯托尼斯(摩拉维亚)发现一根40万年前的幼狼前
肢骨,7英寸长,上面有55道很深的刻痕.这是已发现的用刻痕方法计数的最早资料.直到今天,在欧、亚、非大陆的某些地方,仍然有一些牧人用在棒上刻痕的方法来计算他们的牲畜.
直到距今大约五千年前,终于出现了书写记数以及相应的记数系统.我们介绍几种古老文明的早期记数系统.(按时代顺序)
1. 古埃及的象形数字(公元前3400年左右)
2. 巴比伦楔形文字(公元前2400年左右)
3. 中国甲骨文数字(公元前1600年左右)
4. 希腊阿提卡数字(公元前500年左右)
5. 中国筹算数码(公元前500年左右)
6. 印度婆罗门数字(公元前300年左右)
7. 玛雅数字(?)
而我们现代广泛使用的是阿拉伯数字.其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字.以后,以讹传讹,世界各地都认同了这个说法.
与数的概念形成一样,人类最初的几何知识也是他们从对形的直觉中萌发出来的,例如,不同种族的人都注意到了圆月和挺拔的松树在形象上的区别.几何学便是建立在对这类从自然界提取出来的“形”的总结的基础之上.例如,一个平面只不过是一片平地的表面,而一条直线则是拉紧了的一段绳子,来自希腊文的英文Hypotenuse(斜边、弦)原先的意思就是“拉紧”.同样,三角形、圆、正方形、长方形等一系列几何形式的概念也来自于人们的观察和实践.
在不同的地区,几何学的这种实践来源方向不尽相同.
1. 古埃及几何学:正如古罗马历史学家希罗多德所指出的,埃及的几何学是“尼
罗河的馈赠”.一年一度的尼罗河洪水冲毁了某个人的土地,那么他就必须向
法老报告所受的损失.法老会派专人来测量所失去的土地,再按相应的比例减税.这样一来,几何学就产生并发展起来了.这类专门负责测量事物的人有专门的名称,叫做“司绳”.
2. 巴比伦人的几何学:也是源于实际的测量,它的重要特征是其算术性质,至
少在公元前1600年,他们就已熟悉长方形、直角三角形和等腰三角形和某些梯形的面积计算.
3. 古印度几何学:起源与宗教实践密切相关,公元前8世纪至5世纪形成的所
谓“绳法经”,便是关于祭坛与寺庙建造中的几何问题及其求解法则的记载.
4. 古代中国几何学:起源更多地与天文观测相联系.中国最早的数学经典《周
髀算经》(至晚在公元前2世纪成书)事实上是一部讨论西周初年天文测量中所用数学方法的着作。