❶ 高一高二高三数学分别学什么
高一高二高三数学内容:
高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》。但有些地方学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。如初中所学习的直线方程,圆的方程以及一些性质关系等。
到了高二要学习必修五,主要内容是《数列》,《不等式》等,对于我们在高一学习的解析几何,到了高二还要学《圆锥曲线》等。当然,函数与导数,参数方程与极坐标也应该是高二学习的内容。地方不同,还有些选学的内容也不同。
高三不在学习新的知识,高中数学内容已经全部学完,主要是复习高一高二所学。
高一数学学习技巧
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。
听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高4 5 分钟课堂效益。
其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。
数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。 课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
❷ 江苏现在的高一升高二后,高二上学期数学准备学哪些知识点
很多人想知道高二数学的学习上有哪些重要的知识点,小编为大家整理了一些高二数学的重点知识,供参考!
1高二上学期数学知识点总结
一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4)(乘法单调性)
3.绝对值不等式的性质
(2)如果a>0,那么
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
三、解不等式
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|0)
(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.
(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)
四、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
五、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
六、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学
七、《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
八、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
2高二上学期数学重点知识大全
一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
3高二数学期末复习建议
1、高二数学期末考试首先是对高二数学学习的检测,所以先要保证自己的基础知识没有问题,那么就需要高二学生在进行高二数学期末复习的时候要着重书上的重要知识点,在做题的时候一定要知道自己运用的什么知识点,如有不会及时解决。
2、高二数学期末考试中基础题为主要,所以在进行练习的时候要对典型题的解题步骤和易错要点注意。比如利用导数求函数单调性的步骤,数学归纳法的基本思路和步骤,排列组合中的分类讨论、排除法问题,用二项式定理求展开式中某项系数问题,服从典型分布的离散型随机变量问题。一定要细心,保证自己会的不丢分。
3、高二数学期末复习的时候就要学会掌控时间,数学对于有些人来说做题是很费时间的,所以一定要勤加练习,别造成考试的时候题会做,但是没有时间做,这样就很伤心了。
4、学习不能是死学,一定要活学活用,一个题目会了就要保证相类似的题型就差不多没问题。
5、考试中也会有难题出现,这就考查学生的能力了,所以在高二数学期末复习中还要做一些难题,以保证考试的时候没有思路。
❸ 高二上学期数学知识点有哪些
数学作文高中主科之一,那么高二上册数学知识点有哪些呢。以下是由我为大家整理的“高二上学期数学知识点有哪些”,仅供参考,欢迎大家阅读。
一、曲线与方程
1.椭圆
椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。
2.双曲线
标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.
3.抛物线
1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。
2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。
3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。
用点差法解圆锥曲线的中点弦逗拦塌问题
二、空间几何体
1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。
2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。
三、正弦定理和余弦定理
1.正弦定理
在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R
2.余弦定理
三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。
3.例题:熊丹老师教你正弦定理做题时的注意事项
五、常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
3、逻辑联结词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命题”的真假特点是“一真即真,要假衡樱全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存山圆在性命题。
全称命题p: ; 全称命题p的否定 p: 。
特称命题p: ; 特称命题p的否定 p: ;
错题分析法
对于数学,多做题是取得数学高分的保证。但是不能忽视纠错这个环节。有很多同学,他们同样是非常努力的,但是成绩总是不见提高,因为他们只是埋头题海之中,对做错的题重视不够。做了很多的题,完了错的还是做错,这样就得不到提高。要在保证题的数量的同时,把做错的题一定得搞清楚弄明白,最好能够反复再算几遍,争取下一次遇到同类型的题就可以拿下来,那么题海战术才能真正体现它的魅力所在。
总结归类
首先,根据多年的经验,我们将解题思路相近甚至相同的习题归类。其次静下心来思考解这类题有哪几种入手途径,每种途径在具体操作时我们应当注意什么问题。比如,使用韦达定理的时候我们要考虑一元二次方程是否有根,特别是我们在做圆锥曲线习题时,有的题目就是通过一元二次方程有根这个条件找参数的范围。
再次,我们必须选择一定数量的习题练习来验证我们的想法。这时候做题一定要仔细完整。接下来,对照答案检查做得是否正确。如果错误,就要分析自己的思路在哪里出了问题。最后,再回想一遍。以后考试,遇到此类习题就能轻松地找到入手途径,节省时间。
一题多解法
数学中的很多题目,都可以通过“一题多解”来解决,这个方法可能有些老掉牙,但绝对是有效的方法,同时,学生的数学能力也会随之提高。但之所以在这里提出来,是因为这样的方法并不是对于所有知识点都适用的。
举个例子,对于一道导数题,一般会遵循“求导—极值讨论”的步骤进行,很难从中发掘多种解法,而对于三角函数的大题,也一般考查“正余弦定理”、“三角函数的定义域、值域”,也是一题多解不适用的。而像对于解析几何这类的压轴题而言,一题多解就是很能锻炼我们思维方式。
比方说,研究直线与圆锥曲线位置关系的题目,直线的不同设法(关于x、y的方程),圆锥曲线的不同表示形式(方程形式、三角函数形式)都会对题目的解答产生不同的影响。这就需要我们碰到这类大题,勤于思考,争取做到“一题多解”。
❹ 高二上学期的数学是必修几
高二上学期的数学是必修3,是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。中学数学中的算法内容和其他内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。具体来说,需要通过模仿、操作、探索,学习设计程序框图表达解决问题的过程,体会算法的基本思想和含义,理解算法的基本结构和基本算法语句,并了解中国古代数学中的算法。