导航:首页 > 数字科学 > 数学解决问题如何说想法思路

数学解决问题如何说想法思路

发布时间:2023-07-19 07:11:50

A. 数学题如何打开思路

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:


注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

B. 什么是解题思路数学

解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。先来看转化思想:我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。二、初中数学学生必备的解题理念1.如果把解题比做打仗,那么解题者的兵器就是数学基础知识,兵力就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是兵法。2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。问题是数学的心脏。3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
微信在线答题系统-培训机构专属网校课堂直播系统
广告 微信在线答题系统云朵课堂一站解决,提供直播录播+互动答疑+教学管理+考试题库等 查看详情 >
    (2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。     (3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。     4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。     5.问题解决有不同的解释,比较典型的观点可归纳为4种:     (1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。     (2)问题解决是一个探究过程。把问题解决定义为将先前已获得的知识用于新的、不熟悉的情境的过程。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。     (3)问题解决是一个学习目的。学习数学的主要目的在于问题解决。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。     (4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。     6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究怎样解,较少问为什么这样解。在这些误区里,解题而不立法、作答而不立论。     7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功

C. 如何解答数学问题

如何解答数学问题?

方法步骤:

1、首先,要审清题干,明确你已知什么,包括题干中给出了什么具体信息,隐含信息。这样你才知道你有什么,这是你要得到什么的基础前提。带着这样的思路去分析问题,就是一种数学上由已知推未知的思路。数学其实本质上就是在做这样的事情,不管是推理还是计算。

2、其次,要将题目进行推理转化,类似于数学上的分析法。如我要吃饭,那我得先做饭或者买饭,做饭的话需要什么材料需要什么步骤,买饭的话需要多少钱买什么东西。然后一直这样追问下去,直到将问题的源头和最终要解决的问题联系起来,那么就完成解决问题的思维过程,也就是转化完毕。

3、将思维的过程从前到后整理成逻辑性的步骤。可以说第二步就是逆向思维的过程,这就是正向推导的逻辑推理。步骤要运用到最基本的推理,这些是你完成步骤最基本的保证。

注意事项

D. 解决数学问题的常见方法与思路有哪些

一、用字母表示数的思想

这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b

二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。

6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。

三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.

四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

E. 小学数学解决问题的思路和方法

小学数学解决问题的思路和方法如下:

1、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。

公式法:运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

解题技巧:

1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2. 特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

F. 怎么分析数学题的解题思路

第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出李拦题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求清核,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——必要性思维。

第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?

其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已答扰掘知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。

解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。

第三、回归课本---夯实基础。

1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。

G. 解决数学问题的常见思路方法有哪些

1、公式法:将公式直接运用到问题中,常用在代数问题中.解决该类问题必须记好数学公式.
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中.解决该类问题必须掌握好几何中的定义、公理、定理和推论等.
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中.

阅读全文

与数学解决问题如何说想法思路相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:726
乙酸乙酯化学式怎么算 浏览:1391
沈阳初中的数学是什么版本的 浏览:1337
华为手机家人共享如何查看地理位置 浏览:1029
一氧化碳还原氧化铝化学方程式怎么配平 浏览:870
数学c什么意思是什么意思是什么 浏览:1393
中考初中地理如何补 浏览:1282
360浏览器历史在哪里下载迅雷下载 浏览:687
数学奥数卡怎么办 浏览:1372
如何回答地理是什么 浏览:1007
win7如何删除电脑文件浏览历史 浏览:1040
大学物理实验干什么用的到 浏览:1470
二年级上册数学框框怎么填 浏览:1684
西安瑞禧生物科技有限公司怎么样 浏览:915
武大的分析化学怎么样 浏览:1234
ige电化学发光偏高怎么办 浏览:1323
学而思初中英语和语文怎么样 浏览:1631
下列哪个水飞蓟素化学结构 浏览:1411
化学理学哪些专业好 浏览:1474
数学中的棱的意思是什么 浏览:1039