1. 谁能帮我写关于“让数学走进生活”的参考文献综述范文~谢谢!~~
走进生活中的数学才会有更强的生命力
[摘要]现状调查表明,我国数学学习具有较强的自我封闭性,普遍注重“纯粹”技能技巧的训练和题型教学,脱离社会生活实际,即使一些数学技能较好的学生面对现实的数学问题也常常感到困难。我们学生通常认为“数学就是解题”,“学数学就是通过解题求得一个结果”。其实不然,数学应该是一个过程,一种活动,学数学更重要的是运用数学解决生活中的问题。如果把数学比作是鱼,那么生活就是数学所需要的水;如果把数学比作是花,那么生活就是数学所需求的泥土。只有数学与生活相结合,让数学融于生活,走进生活才会具有更强的生命力。
关键词:必要性;现状分析;教学策略;
一、 数学融于生活的必要性
《课标》中提出“人人学有价值的数学”,是指人人能获得必需的数学,数学应满足学生未来社会生活的需要,能适应学生个性发展的要求。“有价值”的数学应该与学生的现实生活密切联系。学习数学是重要的,将数学融于生活更是必要的。
数学的结果的呈现形式往往是一些经过精心组织的、条理清晰的数学结构,它们虽然看上去很完美,但却割断了与现实生活之间的联系,差不多完全没有了产生与发展的痕迹。如果教师授课时仅仅把数学结果作为课堂上的内容,学生的参与只能是被动的,他们就很难找到发挥主动性和创造性的空间,对数学的兴趣和爱好就成了空谈。比如,教师在讲授七年级下的第2章《图形的变换》时,倘若只是纯粹地介绍平移变换,旋转变换的概念,学生必定很难理解。如果将平移变换与我们平时生活中的缆车的运动,生产线上的产品的移动联系,旋转变换与钟面上时针、分针的运动相结合,我想学生必定能通过生活中这种典型的数学模型,充分理解平移变换,旋转变换的概念。只有将数学贴近学生熟悉的现实生活,将生活中的数学与教科书上的数学相结合,使生活和数学融为一体,这样才能有利于学生理解数学、热爱数学,让数学成为学生发展的重要动力源泉。
二、 现状分析
虽然现在提倡素质教育,但迫于升学的压力,现在的教育在一定的程度上还存在很多的弊端。不管是学校,教师,家长重视的不是学生学习的过程,而是学习的结果,说直白点还是更看重考试分数。
(1) 学习方式以被动为主
表现之一是教学过程中还是以教师的讲授为主,很少让学生通过自己的活动与时间来获取知识、得到发展。依靠学生查阅资料、集体讨论为主的学习的活动很少。另一表现是学生们很少有根据自己的理解发表看法和意见的机会。这样的教学过程很难使学生达到真正的理解,只是纯粹地接受教科书上的知识点。中小学学生在学习数学知识的时候,一般都是独立于学生生活的“外来物”,是一个封闭的“知识体系”,只是由抽象的符号所构成的一系列客观数学事实(概念、定理、公式、法则等)。这种没有与生活联系的数学犹如一潭死水,没有的生机,没有与生活联系的数学学习更是枯燥乏味。
(2) 学习评价单一
现在对学习数学的评价还是以考试的形式为主,以学生考试的分数为标准。对学生而言,他们的强烈感受就是考试次数多,考题和考卷的分量重,考试难度大,导致他们根本没有空余时间去思考,学习数学的目的就变成了解题,而不是将书本上的数学知识应用于生活。长时间下去,学生对学习数学就失去了兴趣,成了一台考试的机器。
三、 教学策略
(1)创设情境,在生活中体会数学
所谓创设情境,就是把那些不知与已知、浅知与深知的知识、需要学生解决的矛盾问题带到一定的场景中去。新课程标准中很重要的改革是注重学生的情感与态度的培养,新理念的数学教学也要求紧密联系学生的生活实际。
创设生活情境,能激发学生探索规律的兴趣;创设生活情境,可以从他们的经验和已有知识出发,引导探索新知识。
(2)在课堂训练中体验“生活化”。
数学起源于生活,又作用于生活。数学课堂教学应该着力体现“小课堂、大社会”的理念,让学生贴近生活情境中发现数学问题,运用所学的数学知识解决实际问题,培养学生综合运用知识以及做出决策的能力,使学生有更多的机会接触生活和生产实践中的数学问题,真正认识到数学能力与现实问题之间的密切联系。
比如在讲授“比例线段”时,我有意把学生带到广场上,要学生测量计算广场边的旗杆的高。如何测量?同学们开始讨论,想办法,正当同学们议论纷纷的时候,我适时取来了一根长2米的竹竿,笔直插在操场上。我启发学生思考:如果杆长是影子的2倍,你能想出测旗杆高的办法吗?一位同学抢答道:这时旗杆的高也是它影子的2倍。我马上肯定了那位同学的想法,然后让学生们分组合作,分别同时测量竹竿的影长,旗杆的影长及竹竿的长度,算出了旗杆的高度。接着,我又说:“你们能用比例写出一个求杆高的公式吗?”于是得出:竹竿长:竹竿影长=旗杆高:旗杆影长或竹竿长:旗杆高=竹竿影长:旗杆影长……学生意犹未尽,完全沉醉于探讨活动中,增长了知识,锻炼了能力。我有意让学生通过观察、分析、运用,了解数学知识在生活中的实际作用。目的是培养学生多用数学眼光看问题,多用数学头脑想问题,增强学生运用数学知识解决生活中的实际问题的意识。
(3)探究生活中数学问题,让数学充满趣味性
心理学研究表明,兴趣是求知的最佳驱动力,只要引起了学生的兴趣,就等于拿了打开知识宝库的钥匙,手拿这把钥匙,学生会主动地去开启智慧之门。“让讲台成为舞台,让教室成为社会,让学生成为演员,让教师成为导演”,将数学与生活、学习、活动有机结合起来,使学生感受到数学源于生活,从而激发学生学习数学的兴趣和欲望。
例如,让学生了解附近市场或超市的销售情况,提出进货的建议。这需要学生了解市场的货物的种类、每天的销售、哪些商品的销售额高等情况,在此基础上才能给出进货的建议。又如,让学生测算粉刷房屋的费用。这需要学生首先测定房屋的粉刷面积,了解市场上有哪些涂料、价格如何,确定选用哪种涂料,需要多少涂料,粉刷的工钱如何计付。教师要努力为学生应用数学知识创造条件和机会,还要鼓励学生在现实中寻找数学知识和数学思想方法解决问题。正如要让一个人学会游泳,必须把他放到水里一样。
总之,数学教学要更贴近学生的生活,使学习数学变得有趣、生动、易懂,并会把数学运用于实践,才能使得数学变得更有活力。让数学走进学生的生活,融于生活,才能使得数学更有生命力。
祝你好运- -
2. 文献综述-浅谈数学中的美
感受数学美,愉快学数学
如果只在单纯知性和机械的层次上理解教育和知识的概念的话,那么美不是知识也是不可教的。因此如何欣赏和体会的问题不能用数学本身的方式——定义、公里、推论、定理的方式来回答,反过来应该问你自己究竟是怎么理解数学美和想怎样去欣赏它。这就激起一种主体的自觉,自动地去要求对数学的理论形式的极大了解,并在这一过程中对数学的本质有了直观的洞见。这样美就成为了主体的自身之物,而在上面这个问题中,美还是一种外在物。单纯作为外在物的美是不存在的。当初我看过一本书《夸克与美洲豹》,提到理论物理学家和数学家带着一支铅笔和几张草稿纸到处旅行,随时随地的进行思考,就对这样一种思辨的生活产生了兴趣,因而报考了数学系。现在个人的数学造诣依然无从谈起,但是这样一种兴趣依然让我感到数学是一种美。
新的数学课程标准指出:在数学教学过程中,教师要充分利用教学资源,对学生实施美的教育,培养学生高尚的审美情趣,培养学生善于发现美、鉴赏美、创造美的能力。使学生在学习过程中充分享受美、从而形成美的心灵、美的灵魂。数学中的美,不是以艺术家所用的色彩、线条、旋律等形象语言表现出来,而是把自然规律抽象成一些概念、定理或公式,并通过演绎而构成一幅现实世界与理想空间的完美图像。只有数学内在结构的美,才更令人心驰神往与陶醉。它的博大精深与简明透彻都给观赏者以巨大的美的感染。罗素说过:“数学在使人赏心悦目和提供审美价值方面,至少可与其它任何一种文化门类媲美。”
数学的美在哪里?如何将数学的美贯穿于教育教学之中呢?笔者在长期的教学中感悟颇多,现写出来与各位同行商榷探讨。
一、简洁美
爱因斯坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。
数学基本概念、理论或公式所呈现的简单性就是一种实实在在的简洁美。而且这一种简洁美中,往往又包含了物质世界的伟力和完美性,使学生学得既轻松又有味。
圆的周长公式:C=2πR,就是“简洁美”的典范。世间的圆形有多少?没有人能说清楚。但它们的周长C、半径R,都必须服从刚才所给出的公式,一个如此简单的公式,概括了所有圆形的共同特性,能不令人惊叹不已?在数学中,像周长公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:
勾股定理:直角三角形两直角边的平方和等于斜边平方。
数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
二 、 和谐美
和谐性也是数学美的特征之一.和谐即雅致,严谨或形式结构的无矛盾性.,所谓"数学的和谐"不仅是宇宙的特点,原子的特点,也是生命的特点,人的特点(高尔泰语)。数学的严谨自然流露出它的和谐,为了追求严谨,追求和谐,数学家们一直在努力。
一切空间图形都可以简化抽象为点、线、面、体,这充分显示出数学和谐的美的规范。这种美感既是精细的,又是深邃的。
和谐的实例中最负盛名的是为开普勒称为欧氏几何学两颗明珠之一的黄金分割。它成为人们普遍喜爱的美的比例,并为广泛应用。艺术家利用它塑造了令人赞叹的艺术珍品,科学家利用它创造了丰硕的科技成果。象征黄金分割的五角星在欧洲也成为一种巫术的标志。这神圣的比例值也被抬高了身价,而被称为黄金数了,成了宇宙的美神。人体最优美的身段遵循着这个黄金分割比;令人心旷神怡的花凭借的也是这个美的密码,就连芭蕾舞艺术的的魅力也离不开它。真是:哪里有黄金数,哪里就有美的闪光。
数学的和谐美还体现在公式、图形的对称性之中。
毕达哥拉斯有句名言:“一切立体图形中最美的是球形,一切平面图形小最美的是圆形”。而圆和球形正是几何中对称美的杰出体现,圆是关于圆心对称的,也是关于圆心的任一条直线对称的。球形既是点对称,又是线对称,还是面对称的。正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。
是不是只有几何中才有对称美呢?下列是对称的杨辉三角。美吗?当然!
1
1 1
1 2 1
l 3 3 1
1 4 6 4 1
1 5 10 10 5 1
三、奇异美
数学美奇异性很容易激发学生的创造欲望,数学奇异美是学生创新的内驱力。而学生在创造性学习活动中又能感受到数学奇异美,两者之间是相互联系相互促进的。数值计算中的反常设想,奇异的分法,美妙的结果都是数学在奇异美,这种奇异美可以揭发学生的创新欲望,培养创新精神,同时在主动探索的过程中能体验到数学奇异美;应用题教学中,学生表现出新奇独特的、不拘一格的方法,正是学习高明的创新思维能力的体现,在此过程中,学生体验了数学美,从而激发了创新欲望;在几何形体知识的教学时,学生所采用的巧妙方法和产生奇异结果,能使学生在惊异中受到美的熏陶,同时使学生产生追求、向往使用巧妙方法和产生奇异结果,培养了学生的创新精神。
例如:数值计算经常会产生一些奇异而美妙的结果。
3×4=12
33×34=1122
333×334=111222
3333×3334=11112222 ……
这一系列美妙的结果显示了一种规律:m个3构成的数与其直接后继的积是一个2m位数,其前m位为1,后m位为2。数学美的奇异性是客观物质世界奇特性的反映。奇异的结果,很容易激发学生的学习热情,会使人感到兴奋,受到吸引,产生美感,精彩之处能使人心灵震撼、心荡神驰。这些都是激励学生克服疑难,不断创新的极好动力。奇异、新颖的外表,又常常蕴含着独特而又有创新性的内容和思想,能给学习者以启迪,帮助其增强求异、创新的能力。因此,数学奇异美是学生创新的内驱力,而学生在创新过程中又能感受到数学的奇异美,两者之间是相互依存、相互促进的。
四、统一美
世界上一切事物都是相互联系的,作为反映客观事物的量的方面的属性和规律的数学概念、定理、公式及法则等也必然是相互联系的,在一定的条件下处于一个统一体系中。数学美的统一性正体现了数学知识的部分与部分、部分与整体之间的有机联系。如:正方形是特殊的长方形,长方形又是特殊的平行四边形,平行四边形又是特殊的四边形。
因此,在教学过程中,教师要做有心人,不断引导学生进行概念之间、公式之间的比较,综合、归纳,在搞清楚数学知识内在联系的基础上,进行必要的分类和整理,组建完整的知识网络。正如新标准强调的在学生已有的知识经验基础上,逐步培养学生学会获取知识的能力,发展合情推理能力和初步的演绎推理能力。
这样,学生对四边形就有了一个比较完整的认识。我们老师的每一节课,不仅要总结出规律,更重要的是要教育学生善于从表面现象中发现规律,教给他们一种善于质疑,善于总结的思考习惯,也只有这样学生们的数学学习能力才能不断提高。
揭示数学中的统一美,不仅能更好的组建数学知识体系,还能帮助学生接受辩证唯物主义的基本观点,会用变化、运动、发展的观点看待貌似孤立、静止的数学知识系统。
古代哲学家、数学家普洛克拉斯说得好:“哪里有数,哪里就有美。”数学的美,她需要人们用心、用智慧深层次地去挖掘,更好地体会她的美学价值和她丰富、深隧的内涵和思想,及其对人类思维的深刻影响。如果在学习过程中,我们能与数学家们一起探索、发现,从中获得成功的喜悦和美的享受,那么我们就会不断深入其中,欣赏和创造美。
人类语言虽有无数分支,但语言艺术都是相通的,数学的美也是相通的。数学家们盼着有一天,我们的眼前有着一个美妙的数学世界。那里没有繁杂累赘,没有断壁残垣,处处是自然的过渡,处处是流畅的衔接,处处是吹着魔笛的可爱的数学精灵,让美妙的数学旋律萦绕在每个人的耳边。
3. 数学论文的文献综述怎么写
文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文,它是科学文献的一种。文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。
文献综述与“读书报告”、“文献复习”、“研究进展”等有相似的地方,它们都是从某一方面的专题研究论文或报告中归纳出来的。但是,文献综述既不象“读书报告”、“文献复习”那样,单纯把一级文献客观地归纳报告,也不象“研究进展”那样只讲科学进程,其特点是“综”,“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。
格式与写法
文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写。
前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。
主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。
总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。
参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。
4. 教育类文献综述范文(数学类的)
不知道是你想要的吗?呵呵
中学时代是人生的春天,是青少年长身体、长知识、形成人生观的一个十分重要的阶段。但在此学习阶段,却有一部分学生对数学感觉到很吃力。因此,明确为什么学数学,怎样学数学,是每一个中学生必须认识和学会的问题。
数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。
数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。
数学学习方法是数学学习时采用的手段、方式和途径。学法是在学习过程中产生和运用的。掌握良好的方法是很重要的事,但又不是一件容易的事情,这需要付出艰苦的努力,需要持之以恒的精神。只有每天坚持不懈,日久天长,数学学习才可能成为自觉的行为,从而掌握数学学习的主动权。所以,数学学习方法并没有什么捷径,它只是踏踏实实、刻苦学习的程序以及在这个学习过程中的各项具体措施。
古人说:“凡事预则立,不预则废。”智力相同的两个学生有无学习计划,直接影响到学习效果。科学的利用时间,在有限的时间内有计划的学习,这是科学学习方法的一条重要原则。所以数学学习缺乏计划性是一些学生天长日久感到吃力的重要原因之一。
要提高数学学习效率,变被动学习为主动学习,做学习的主任,应把握几个步骤:
第一步:抓好课前预习。
在预习过程中,边看,边想,边写,在书上适当勾画和写点批注。特别是,要运用数学学习阅读法,即不能像语文阅读一样,从头看到尾。对于有些例题,则是仔细审题,然后合起书来,试着在练习本上做一做。之后再翻开书对一对,修改和完善自己的所做,及时检查预习的效果,强化记忆。同时,可以初步理解教材的基本内容和思路,找出重点和不理解的问题,尝试做笔记,把预习笔记作为课堂笔记的基础。
我国古代军事家孙子有一句名言:“知己知彼,百战不殆。”这是指对自己和自己的对手有了充分的了解之后,才可能有充分的准备,也才可能克敌制胜。预习就是“知己知彼”的准备工作,就好像赛跑的枪声。虽然赛跑的规则中不允许抢跑,但是在学习中却没有这一规定,不但允许抢跑,而且鼓励抢跑。作好数学预习,就是要抢在时间的前面,使数学学习由被动变为主动。
简言之,数学预习就是上课前的自习,也就是在老师讲课前,自己先独立的学习新课内容,使自己对新课有初步的理解和掌握的过程。预习抓的扎实,可以大大提高效率。
第二步:掌握听讲的正确方法。
处理好听讲与做笔记的关系,重视课堂思考及回答问题,不断提高课堂学习效果。
学生必须上好课、听好课,首先作好课前准备、知识上的准备、物质上的准备、身体上的准备等;其次要专心听讲,尽快进入学习状态,参与课堂内的全部学习活动,始终集中注意力;第三要学会科学的思考问题,注重理解,不要只背结论,要及时弄清教材思路和教师讲解的条理性,要大胆设疑,敢于发表自己的见解,善于多角度验证答案;第四,学生要及时做好各种标记、批语,有选择的记好笔记。第五,数学课堂练习是一个非常重要的环节,课堂练习本要随时准备,并要保存完好,以便复习使用。每节课都要针对所学内容,认真练习,并巩固所学知识。
上课是学生在学校学习数学的基本形式,学生在校的大部分时间是在课堂上度过的。根据数学教学大纲的规定一个学生在中学上数学课的总数大约有五千多节。把每节课四十五分钟积累起来,这将是多么惊人的数字啊!学习成绩的优劣,固然取决于多种因素,但如何对待每一堂课则是关键。要取得较好的成绩,首先必须利用课堂上的四十五分钟,提高听课效率。
听课时应做到以下四点:1、带着问题听课;2、把握住老师讲课的思路;3、养成边听讲、边思考、边记忆的习惯,力争当堂消化、巩固知识;4、踊跃回答老师提问。这样就基本上掌握了听课的要求。
第三步:课后复习应及时。
针对数学学科的特点,采取多种方式进行复习,真正达到排疑解难、巩固提高的目的。
课后要复习教科书,抓住复习的基本内容;尝试回忆,独立的把教师上课内容回想一遍,养成勤思考的好习惯;同时整理笔记,进行知识的加工和补充;另外,针对每天所学内容,多练题,勤巩固。课后还要看参考书,使知识的掌握向深度和广度发展,形成学习上的良性循环。
复习是预习和上课的继续,它将完成预习和上课所没有完成任务,这就是在复习过程中达到对知识的深刻理解和掌握,在理解和掌握的过程中提高运用知识的技能技巧,进而在运用知识的过程中,使知识融会贯通,举一反三,并且通过归纳、整理达到系统化,把知识真正消化吸收,成为自己的知识链条中的一个有机组成部分。在复习过程中既调动了大脑的活动,又提高了分析问题和解决问题的能力,知识也在理解问题的基础上得到巩固记忆。从某种意义上讲,知识掌握的如何,由复习效果决定。
第四步:正确对待作业。
独立思考、认真完成、理解提高是学生对待作业的正确态度。
首先要做好作业的准备工作,把预习、上课、课后复习衔接起来;其次要审好作业题、善于分析和理解题目;第三要理清解题的思路,准确表达,独立完成作业;第四要学会检查,掌握对数学作业进行自我订正的方法。
托尔斯泰说过:“知识只有当它靠积极思维得来时候,才是真正的知识。”无论学那一节功课,课堂上老师讲的,笔记本上记的,课外阅读的… …等等,都是书本上的知识,要把他们转化成自己的知识,使自己能够自如的运用,就必须通过作业实践来转化。
究竟为什么要做作业呢?作业的作用主要有:1、检查学习效果;2、加深对知识的理解和记忆;3、提高思维能力;4、为复习积累资料。
在做作业时,审题是非常重要的。怎样审题呢?1、要看得(理解)准确。失之毫厘,差之千里;2、要善于解刨,深刻领会其中含义;3、要把握联系,运用相关知识解之。
第五:课外涉猎要广博。
要逐步掌握科学的学习规律,包括打好基础,循序渐进,温故知新;搞好课外学习,包括主动进行课外阅读,参加课外实践活动;要掌握正确的课外学习方法,如泛读法、精读法、深思法;要掌握读书要求,如博专结合、读思结合、学用结合、逐渐积累、持之以恒等等。
课外学习能有效地使课内所学知识与社会生产实践、生活实践密切地联系起来,帮助同学们加深对课内所学知识的理解,扩大数学知识的眼界,拓宽思路,激发求知欲望和学习兴趣,培养自学能力与习惯,增长数学才干。这也就是常说的:“课内打基础,课外出人才”。
总之,课前要抓好预习,课中听讲要领悟学法,课后完成作业要巩固学法,课外学习要运用学法,要不断总结优化学法,努力探索适合自己个性的数学学习方法。把数学学习看作是一种乐趣,而不是单纯的为学好数学而学习。这样你就会学得轻松,“吃力”自然就会离你远去。