㈠ 数学的思维导图的构造怎么写
可以根据数学上的一些定义,来进行整理和编写。
数学思维导图是建立在中小学数学学习方法和思维导图应用的基础上,由北京龙途教育率先研发并推广到数学教学与学习中的一种数学学习工具。该思维导图模板有六个分支,新建中心主题之后围绕中心主题所搭建的节点,首先填充的是函数知识中的一般形式,将会出现的情况罗列出来,双击节点对内容进行填充,第二个节点中讲述的内容是围绕函数的走向以及所在的象限进行总结,可以加深记忆。
㈡ 数学思维十种思维方式是什么
1、公式法。
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
2、对照法。
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例:三个连续自然数的和是18,则这三个自然数从小到大分别是多少。
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
3、比较法。
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
1、找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
2、找联系与区别,这是比较的实质。
3、必须在同一种关系下(同-种标准)进行比较,这是“比较”的基本条件。
4、要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
5、因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生。
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路:每人多种7-5=2(棵), 那么,全班就多种了75+15=90(棵),全班人数为90+2=45(人)。
4、分类法。
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要故到大类之中的各小类不重复、不遗漏、不交叉。
例:自然数按约数的个数来分,可分成几类。
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1; (2)有两个约数的,也叫质数,有无数个; (3)有三个约数的,也叫合数,也有无数个。
5、分析法。
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,-直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件。
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
6、综合法。
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于己知条件较少,数量关系比较简单的数学题。
例:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路: 11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有: 3和19, 5和17。它们的差都是小于30的合数吗?和是44的两个质数有: 3和41, 7和37, 13和31。它们的差是小于30的合数吗?这就是综合法的思路。
7、方程法。
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待。
参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克。
这两题用方程解就比较容易。
8、参数法。
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例: 一项工作,甲多带带做要4天完成,乙多带带做要5天完成。两人合做要多少天完成。
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、.....都可以,只不过看作“1”运算最方便。
9、排除法。
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例:为什么说除2外,所有质数都是奇数。
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。 一个数的约数除了1和它本身外,还有别的约数(约数2),这个数定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
10、特例法。
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一。般性存在于特殊性之中。
例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
㈢ 数学思维导图怎么画
数学思维导图的构建模式是先确定中心主题,引出子主题,再将子主题划分为不同层次。具体操作步骤如下。
1、使用最简单的语言确定要绘制的数学主题,以“角度测量”为例,如下图所示。
注意事项:
上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
㈣ 什么是数学模型思想
数学建模思想,本质土是要培养学生灵活运用数学知识解决实际中的问题的能力。在这一过程中,我们需要培养学生的抽象思维、简化思维、批判性思维等数学能力。
1数学建模需要抽象思维
分析上面模型的建立与求解过程,我们可以发现,解决问题时,离不开抽象思维,离不开对高等数学基本概念的深入理解和透彻分析。
当解决问题1时,我们紧密结合“绝对涌出量”与“相对涌出量”的概念,解剖概念所包含的每一点信息,找到了“绝对涌出量”与“相对涌出量”的计算公式,从而建立了数学模型I。
可见,我们要把纷繁芜杂的实际问题,归结到高等数学的相关概念和定义之中,利用定义找到计算公式,从而建立数学模型。在这种层层分析的过程中,抽象思维起到了关键性作用。正是这种层层分析,才使得复杂问题得以解决。所以说,数学建模需要抽象思维。
2数学建模需要简化思维
所谓简化思维,就是把复杂问题进行简化,进而使本质凸显。就像进行X光透视一样,祛除血肉,尽剩骨架。只有迅速抓住主要矛盾,舍弃次要因素,找到问题的本质,才能“看透”问题的本质。
例如,鉴别该矿井属于“低瓦斯矿井”还是“高瓦斯矿井”的问题,本质上是要我们先求出“绝对涌出量”与“相对涌出量”,然后把它们与标准值比大小;煤矿发生爆炸的可能性,实际上是概率问题;该煤矿所需要的最佳(总)通风量,实质上就是最优问题,即带约束条件的线性规划问题。
这种简化思维具有深刻性的特点。它并不是天生就具有的,可以经过精心培养而形成,经过刻苦锻炼而强化。在高等数学的教学过程中,需要培养学生的这种深层次的洞察能力。
3数学建模需要批判性思维
在数学模型建立、求解完成后,我们需要对所得的结果进行分析,还需要对所建立的数学模型进行评价,并及时对模型进行改进,以取得最佳结果。同时,我们还要指出所建模型的实际意义,并努力加以推广。这些环节,都需要良好的批判性思维。
在高等数学的教学过程中,我们需要培养学生的批判性思维。在每道题解完后,我们都要进行这种解后反思的训练,不断地提问:结果对吗?符合实际吗?该解法的优缺点在哪里?还有更好的解法吗?如何改进?能够推广吗?……在这种训练的过程中,学生的批判性思维将得到强化和提高。
㈤ 数学思维导图,怎么画
数学思维导图的构建模式,都是先确定一个中心主题,引出子主题,对子主题再分层次即可。具体操作步骤如下。
1、用最简洁的语言确定要画的数学主题。以“角的度量”为例。如下图所示。
注意事项:
上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
㈥ 思维导图怎么写数学
数学思维导图的写法:
1、数学课本中各个章节的知识点进行总结和梳理。
2、在网上找到免费的思维导图模板。
3、选择新建文件,新建一个导图。
4、双击中心节点,输入中心内容。
5、按下Tab键可依次添加二级节点、三级节点,双击该节点即可输入内容,具体内容根据数学知识进行总结即可。