导航:首页 > 数字科学 > 数学的有意义是什么意思是什么

数学的有意义是什么意思是什么

发布时间:2023-07-21 11:25:51

数学题里的“有意义”,是一种什么意思呢

在众多学科当中数学可以说是比较有难度的一个学科,尤其是在大学学习数学的时候,在众多学科当中可以说是最难的一个学科,因为数学大多数学习都是一种理论和学习方法,最重要的就是自己的逻辑和谨慎的思考,才能够更加全面的掌握数学知识。尤其是在数学当中许多的特定含义都与现实生活当中我们所理解的含义不太相同,比如说在数学当中的“有意义”,就是一种特殊的意思,并不是大家所理解的有意义。在数学当中经常能够看到的“有意义”,其实在数学当中他的意思就是是否能够得到一个满意的结果或者说是得到的这个事情是否真实可行。

② 数学题里的“有意义”究竟是什么意思

引言:同学们一般在解数学题的时候,他会发现数学题里面一般要求有意义,究竟这个有意义是什么意思呢?接下来跟着小编一起去了解一下吧。

所以在做题的时候一定要满足式子的要求,这个时候一些数学公式它才能够帮助同学们解出答案,当你发现自己没有满足式子的要求,在很多情况下这个式子是无解的,所以就算你写了一篇纸,它可能的结果还是不知道,所以我们在做题的时候一定要仔细认真将它的合理性给提出来,所以一定要满足它的条件,这样才能有解。因为你会知道数学题里面一般会有很多公式,而且公式的范围值也可能会非常的广,所以在字面上我们理解的意思就是使等式成立,但是在做数学题的时候,我们知道很多题它不可能是虚拟的,它跟我们现实是息息相关的,这个时候我们就要懂得满足一些现实中的条件,所以任何事物不可能为0,当它为0我们解决的答案就可能是无解。

③ 数学题里的“有意义”,是什么意思呢

在地球上生活着许多种动物、但是人类是最为特别的、因为我们有自己的文化、情感等等、才能建立起庞大的人类帝国、在日常生活中、教育是必不可少的、正是因为文化的传播才让这个世界日新月异、每时每刻都在发生着变化、在读书阶段很多人都讨厌数学、甚至从来没有考过高分、因为对于他们来说实在太难、特别是数学里面有很多定义、比如数学题里面的“有意义”、是什么意思呢?他有字面意思和题目涵盖的意思、比如我们做事情要有意义的事原本的字面意思、而数学题里面就是证明某种方法或者事情是否可行、如果可以得到一个满意的结果、那磨浆开辟出另一片空间。

④ 数学的意义与价值是什么

数学的意义:数学是研究数量,结构,变化,空间以及信息等。数学所描述的数量关系与空间形式,就自然成为物理学,力学,天文学,化学,生物学等自然科学的基础。

数学的价值:数学为物理学,力学,天文学等科学提供了语言与工具。

数学被应用在很多不同的领域上,包括科学,工程,医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

以上内容来源:网络-数学

⑤ 数学的意义是什么

数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。

掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。

有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用。比如计算机的二进制,比如圆锥曲线的应用,也许你只知道它很麻烦很变态,实际上反光镜、冷却塔的原理都少不了它!

严谨性

严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”。

而这情形在历史上曾出现过许多的例子,在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。

牛顿为了解决问题所作的定义,到了19世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度。

⑥ 在数学中经常出现的“有意义”,到底是什么意思

指的是数学函数在这个地方有含义,或者有对应的数值。

数学是一门综合性很强的学科,不仅需要我们一定的计算能力,还是需要我们有一定的阅读能力,思考能力。

数学的学习是一个多练习的过程,我们不能仅仅从眼前的几道题上就认为我们明白了一个定义,一个公式,我们更多的是将我们学习的公式结合起来,考试或者实际的应用也不是简单一个公式的应用,更多的是综合知识的应用。我们在学习的时候,也是要不断的进行综合练习,提高我们的数学能力,带动我们的思维和思考。

⑦ 数学的意义与价值是什么

数学的意义:数学是研究数量、结构、变化、空间以及信息等,数学所描述的数量关系与空间形式,就自然成为物理学、力学、天文学、化学、生物学等自然科学的基础。数学的价值:数学为物理学、力学、天文学等科学提供了语言与工具。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。数学的应用已深入到自然科学、技术科学和社会人文科学的各个领域,以及社会生活的各个方面。基础数学的知识与运用更是个人与团体生活中不可或缺的一部分。

数学不仅是自然科学的基础,而且也是一切重大技术革命的基础,20世纪最伟大的技术成就应当是电子计算机的发明与应用。它使人类进入了信息时代。然而,无论是计算机的发明,还是它的广泛使用,都是以数学为其基础的。

数学是研究数量、结构、变化以及空间模型等概念的一门古老而常新的学科,是由计数、计算、量度和对物体形状及运动的观察中产生的。数学的发生和发展经过了漫长的历史阶段,它具有精确性、抽象性、严格性、广泛性等特点,其中抽象是数学与生俱来的特征,导致了它的深邃和睿智。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

⑧ 数学题目中的有意义是什么意思

数学中的“有意义”一般情况下是指这个式子存在的合理性,即满足这个式子成立的各个字母、因式等都是成立和满足应有的条件的。如分式中的分母,要不为零,这个式子才能叫分式,才能存在,才有意义的。
希望回答能帮到你!

⑨ 数学的意义。

数学的意义:

1、数学是人类探究世界,研究自然界任何事物的核心;

2、数学衍生出了物理学、化学、生物学,数学不断推动着人类的发展;

3、数学是公理、约定的支点,有了数学,研究才得以继续;

4、数学衍生出二维、三维、高维,是这些事物存在的基础。

一、中学数学有什么用?

1、初中数学学什么?

我们以现行初中数学教材(六三制)为例:

七年级(上):有理数;整式的加减;一元一次方程;几何图形初步;
七年级(下):相交线与平行线;实数;平面直角坐标系;二元一次方程;不等式和不等式组;数据的收集、整理与描述;
八年级(上):三角形;全等三角形;轴对称;整式的乘法与因式分解;分式;
八年级(下):二次根式;勾股定理;平行四边形;一次函数;数据的分析;
九年级(上):一元二次方程;二次函数;旋转;圆;概率初步;
九年级(下):反比例函数;相似;锐角三角函数;投影和视图。
这6册书的内容其实可以按照研究的内容重新整理成为3个模块。

代数模块:有理数;整式的加减;一元一次方程;实数;平面直角坐标系;二元一次方程;不等式和不等式组;整式的乘法与因式分解;分式;二次根式;一次函数;一元二次方程;二次函数;反比例函数。
几何模块:几何图形初步、相交线与平行线;三角形;全等三角形;轴对称;勾股定理;平行四边形;旋转;圆;相似;锐角三角函数;投影和视图。
统计模块:数据的收集、整理与描述;数据的分析;概率初步。
数学在难度上的突然提升一般在初二上学期。这个时期,无论几何证明还是代数式化简,其解题对模式识别和技巧要求很高,学生需要一定量的训练,这个过程是枯燥乏味的;同时还需要一定的观察力,成绩拉开是在这个阶段,不少学生对数学兴趣丧失也是在这个阶段。

2、高中数学学什么?

原新课标高中教材:

必修部分:

必修1:集合;函数(概念、性质、一次函数和二次函数);基本初等函数I(指数函数、对数函数和幂函数)
必修2:立体几何初步(空间几何体、位置关系);解析几何初步(平面直角坐标系、直线方程、圆方程、空间直角坐标系)
必修3:算法初步;统计;概率
必修4:基本初等函数II(三角函数);平面向量;三角恒等变换
必修5:解三角形;数列;不等式
选修1系列(文科):

选修1-1:常用逻辑用语;圆锥曲线与方程;导数及其应用
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图
选修2系列(理科):

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、概率、统计案例
其他选修课

3-1数学史、3-3球面几何、3-4对称与群论、4-1几何证明选讲、4-2矩阵与变换、4-4坐标系和参数方程、4-5不等式选讲、4-6初等数论初步、4-7优选法与试验设计初步、4-9风险与决策。
很多省份高考选考题是从4-1几何证明选讲、4-4坐标系和参数方程、4-5不等式选讲这三部分中出题,应该说是比较适应大学高等数学的学习的,但没选择矩阵还是令人遗憾。

新版新课标高中教材

必修A版共两册:

第一册:集合与常用逻辑用语;一元二次函数、方程和不等式;函数的概念和性质;指数函数与对数函数;三角函数
第二册:平面向量及其应用;复数;立体几何初步;统计;概率
必修B版共四册:

第一册:集合与常用逻辑用语;等式与不等式;函数;
第二册:指数函数、对数函数与幂函数;统计与概率;平面向量初步
第三册:三角函数;向量的数量积和三角恒等变换;
第四册:解三角形;复数;立体几何初步
选择性必修共三册:

第一册:空间向量与立体几何;直线和圆的方程;圆锥曲线的方程
第二册:数列;一元函数的导数及其应用
第三册:计数原理;随机变量及其分布;成对数据的统计分析
综上,高中内容也可大致归纳为三个模块:

函数与代数模块:集合与常用逻辑用语;函数的概念和性质;初等函数(指数函数、对数函数、幂函数、三角函数包括三角恒等变换);平面向量(平面向量初步、向量的数量积、解三角形);等式与不等式;数列;一元函数的导数及其应用
几何模块:1)立体几何—空间几何体;空间位置关系;空间向量与立体几何;2)解析几何—直角坐标系;直线和圆的方程;圆锥曲线的方程
概率与统计模块:统计与概率(数据的收集、特征和表示、样本估计总体;随机事件和独立性、古典概型);计数原理(排列组合、二项式);随机变量及其分布(随机变量和条件概率);成对数据的统计分析(相关和回归)
3、中学课程与大学课程的衔接:

数学根据研究对象的不同,可以并不准确地划分为简单的四个部分:

代数的研究对象是代数结构和运算法则;
几何的研究对象是图形性质和空间关系变化;
分析的研究对象是函数也就是变量关系的性质;
数论的研究对象是整数的性质。
之所以说并不准确,是因为数学学科作为一个门类,各个部分之间彼此联系得非常紧密,各个专门领域之间相互借鉴之处甚多,很难严格地将它们互相区分。例如初中数学中的函数图像,高中数学中的三角函数、解析几何、向量,都是这方面的典型体现。

一般而言,如果不是专门研究数学的大学生,在本科阶段最主要的数学课程是高等数学、线性代数、概率论和数理统计这三门课程,这也是考研数学的主要内容。高等数学就属于分析范畴,线性代数属于代数范畴,概率论和数理统计属于应用数学范畴,但需要分析和代数工具。几何和数论一般只有数学系和少数专业学习。

中学数学知识是学习大学数学知识的基础,这就是学习中学数学的意义所在。下面我来大致梳理一下中学数学知识的联系,以及它们如何构成大学数学的学习基础。

先说代数和分析:

小学我们做的计算题都是数的运算,结果就是一个数,所以学的都是数的运算法则。到了小学高年级,我们开始学到用字母表示数,这叫做代数式。

“代数”是晚清数学家李善兰译介到中国来的,取其“以字代数”之意。代数式是一种语言体系的转换,我们可以通过这种方式构造公式,将运算一般化,得到通用的解法;等到面对具体问题时,在将具体的数代入公式中,就可以解决问题了;而代数研究的目的就是寻求通用的解法。公元820年,波斯数学家花剌子模发表了一份代数学领域的专着,阐述了一次和二次方程的通用解法,明确提出了代数中的一些基本概念,把代数发展成为一门与几何相提并论的独立学科。书名中首次使用了al jabr一词,其含义是“重新整合”,也就是移项与合并同类项。 转译为拉丁语后,变成了 algebra,后来又进入了英语。这就是“代数”一词的词源含义。

引入代数式之后出现了数系的扩充。随着处理的数字越来越复杂,加减乘除的四则运算不能够得到自然数的结果,a-b(a<b,a和b都是整数)引出了负数,a/b(a<b,b≠0,a和b都是整数)引出了分数。所以我们把原来的整数扩展为有理数。这是另一种语言体系的转换,我们使得运算的范围扩大了。

然后我们开始学习整式(字母不做分母的代数式,包括单项式和多项式)的加减和乘法,并且学了整式乘法的逆运算——因式分解,即如何将一个复杂多项式转化成简单多项式的乘法;并且从另一条主线上,我们也学习了整式方程即一元一次方程、二元一次方程和不等式。整式也能够做除法,变成分式,同时也可以做分式方程。但是,在解一元二次方程时遇到了开方问题,这种运算与四则运算不同,得到的结果不一定是有理数,于是我们接受了无理数的存在,并将数系扩充到实数。开方运算有一些特殊的运算法则,例如负数不能开平方之类,这种法则同样代数式同样要遵守,这就是根式。有了这些基础,一元二次方程的问题就能够解决了,我们得到了一元二次方程的通用解法——求根公式。

学了好了基本的运算(加减乘除和开方)和方程以后,引入了函数,引入函数以后,数学的语言体系就又提高了一个新的层次。研究函数和应用函数,是分析的主要任务。函数之重要性,说它是现代数学最重要的概念也不为过。世界上的事物是普遍联系的,但是传统的自然哲学对这种联系的分析都是定性的:比如用火加热,水的温度就会上升;用力越大,弹簧拉得越长;而现代科学则需要对这种联系进行定量分析,找到联系的普遍规律,这就需要用到函数工具。初中物理里的关于加热的公式Q=Cm(T2-T1)、弹簧受力的公式N=k(x-x0)以及高中物理的万有引力公式F=GMm/r2,本质上都是这种借助函数工具进行定量研究的产物。函数是中学数学承上启下的核心知识,初中函数的应用基本是在解方程和不等式上,而高中数学除了一部分几何和统计知识以外,几乎完全建构在函数理论之上。

高中数学首先引入集合语言,引出后文对函数的定义。集合论是现代数学各个分支领域的基石,但是高中水平的数学几乎用不到这个东西,只需要会进行简单的集合运算就可以。然后开始深入研究函数的单调性、奇偶性等一般性质,初等函数(指数函数、对数函数、幂函数、三角函数)的特殊性质,以及一种自变量为正整数,因变量为实数的特殊函数——数列,即实数序列。三角函数引出平面向量,其运算法则反映出的向量代数也是一次数学语言的重大飞跃:我们发现能够运算的不仅是数和代数式,还有有序的数和代数式。然后是不等式,你也许会疑惑学这么复杂的不等式干什么,但到了大学学习真正的数学分析就会知道,不等式证明技巧是学习数学分析必备的本领。这些基础打牢以后,就开始学习极限和导数,高中数学到此就戛然而止了。函数、数列、不等式、导数是高中数学最难的部分,这些也是高等数学基础的基础。高考题的最后一题,基本上就是函数、数列、不等式和导数的综合应用。

到了大学,接续这部分的内容就是大名鼎鼎的高等数学,其中绝大多数内容也就是微积分。数学专业则学习数学分析,这是用更严密的论证体系来学习微积分。不过,无论是高数、数分,研究的函数都比较直观,基本上都是连续函数,或者说黎曼可积函数。而不满足上述条件的实函数,则需要基于集合论、测度论和勒贝格积分的实变函数理论来研究。在另一个方向上,函数的变量也不都是实数,如果变量是复数,则由复变函数或者复分析这门学科来研究。自变量除了数以外,还可以是函数,函数的函数叫做泛函,研究泛函以及无限维空间变换的理论叫做泛函分析,这是比实分析和复分析更加抽象的数学。此外,方程中也可以用微积分,研究如何求解包含微积分的方程的领域叫做微分方程,其中研究包含一元函数微积分的叫常微分方程,研究包含多元函数微积分的叫偏微分方程。分析领域的各个学科都跟理论物理的学习和研究有很大的关联。

高中的平面向量和空间向量,其主要作用是为解三角形和立体几何证明打基础,从应用角度讲算作几何模块更恰当。学到平面向量和空间向量,中学代数的内容就戛然而止了。到了大学,一次方程组被重新拉回视野。因为一次函数的图像是一条直线,所以一次方程组也叫线性方程组,线性代数就是从研究线性方程组的通用解法开始入门。通过运用n元向量、矩阵和行列式,最终得到了线性方程组的通用解法——克莱默法则(但是后面我们会知道,行列式的计算非常复杂,克莱默法则远不如高斯消元法好用,线性代数和高等代数只是拿线性方程组作为引子,引出线性空间这个核心,而这种解线性方程组的任务就交给计算数学专业的数值代数课程了)。与此同时,我们运算的对象也扩展到了向量和矩阵;我们发现,这些运算很相似,都有类似的结构,数学家将其进一步抽象为线性空间,并将研究线性空间的性质和变换作为线性代数的主要任务。而我们直观上能够感受到的三维空间,则是线性空间的一种特殊形式。为了研究这种特殊形式,引入了双线性函数和二次型,得到了内积运算,进而将线性空间特殊化为度量空间,这样线性空间理论就有了能够用于几何研究或解决实际问题的用途。线性空间是最简单的代数学研究对象,除此以外代数学的研究对象还有群、环、域等,研究这些对象及其性质的后续课程叫做抽象代数或者近世代数。初中几何遇到的三等分角、立方倍积和化圆为方三大不可作图问题的证明就需要用到抽象代数的知识。高中选修3-4对称与群、4-2矩阵与变换,分别对应着群论(抽象代数的部分内容)和矩阵代数(线性代数的简单部分),可以课余时间读一读。

然后我们再说说几何:

几何的英文是Geometry,Geo-是“大地”的词根,-metry是“测量”的词根。Geometry直接意思就是“土地测量”。几何起源于古埃及,因为埃及的尼罗河每年的周期性泛滥带来大量肥沃土壤,但是土地的分界也都会被冲毁,因此每年古埃及人都要重新丈量土地,在长期实践中总结的测量技术逐渐发展成为最初的几何学

阅读全文

与数学的有意义是什么意思是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:667
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1019
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:818
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1298
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015