㈠ 高中数学八大定理
高中数学:立体几何的八大定理
—、直线与平面平行的判定定理
如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行
作用:线线平行→线面平行
二、直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行
作用∶线面平行→线线平行
三、平面与平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行
作用︰线线平行→面面平行
四、平面与平面平行的性质定理
1如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行
㈡ 高一数学解三角形中线的解题思路
1.作图法,适合在图形题中加辅助线。
2,图解法:
已知三角形ABC,边AB,BC,AC.
(1)若ABC为正三角形,求D为AB中点,角相等对应对边相等;同顶点出发BC+BD=AC+CD;求证AB垂直于DC从而求D为AB的中点。
(2)若ABC为直角三角形,D在斜边AB上,∠C为直角边。补对角A'构造矩形,采用矩形的对角线平分,求中点;AB平方=AC平方+BC平方;已知角,通过角的度数求出来。
(3)为一般三角形,可以用同顶点出发法和构造法,前提是要给出足够的条件。
其实,只要好好的读题,就能从中找出思路。
各种条件要读出来,还要记住各种三角形的特征。
勤学苦练才是真找。
㈢ 高中数学:重心垂心中心内心外心的定义分别是什么速度,谢谢了。
1、重心:三角形的三条中线交点。
2、外心:三角形的三边的垂直平分线交点。
3、垂心:三角形的三条高交于一点。
4、内心:三角形的三内角平分线交于一点。
5、中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形的五心特点:
1、内心:三角形三条内角平分线的交点,即内切圆的圆心。内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
5、旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。旁心到三角形三边的距离相等。三角形有三个旁切圆,三个旁心。旁心一定在三角形外。直角三角形斜边上的旁切圆的半径等于三角形周长的一半。
(3)高中数学中线是什么扩展阅读:
任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。
重心:三角形三边中线的交点,为三角形的重心;在三角形的内部;
重心定理:重心到顶点的距离是到对边中点距离的2倍。
垂心:三角形三边高线的交点,为三角形的垂心;锐角三角形垂心在内部,直角三角形在直角顶点,钝角三角形在外部。
外心:三角形三边垂直平分线的交点,为三角形的外心;锐角三角形的外心在内部,直角三角形在斜边中点,钝角三角形在外部;此点为△外接圆的圆心,到三顶点的距离相等,这个距离叫外接圆半径R.
内心:三角形三内角平分线的交点,为三角形的内心;在三角形的内部,此点为三角形内切圆的圆心,到三边的距离相等,此距离为内切圆半径r.
㈣ 三角形的高、中线、角平分线用数学符号语言的表示方法
高是H,中线和角平分线是取决于垂直点的,由自己定义符号。
1、中线
连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。
2、高
从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。
3、角平分线
三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线(bisector of angle)。
4、中位线
三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。
(4)高中数学中线是什么扩展阅读:
相关计算公式:
一、周长公式
若一个三角形的三边分别为a、b、c,则C=a+b+c。
二、面积公式
1、S=1/2ah(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
2、S=1/2acsinB=1/2bcsinA=1/2absinC(其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数)
3、S=hl(l为高所在边中位线)