㈠ 数学期望怎么求
首先你需要知道团让数学期望的定义为EX=∫xf(x)dx在0到正无穷上面的定积分,其中f(x)表示的是概率密度函数察租(这是对连续的)。
之后你要塌没局知道一个公式就是方差公式D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2
根据1中的公式计算E(X^2)、[ E(X)]^2就可以求出来了。
4.如果要是在统计学中呢,方差为S^2= ∑(X- ) ^2 / (n-1)
㈡ 连续性的随机变量的求数学期望 E(X²)怎么求
要求EX^2,只知道EX还不够,至少要知道x是如何分布的,也即它的分布函数或者概率密度函数。
若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,27)。
3X与X+X+X没有区别。Z=X+Y的密度函数也要根据X,Y的概率密度f(xy)来求,一般用作图法计算,先算出分布函数F(Z),再算密度函数f(z),也可以直接积分计算:f(z)=将f(x,z-x)对x积分,这时的难点是确定好积分上下限。
如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。
(2)数学期望EX2Y怎么求扩展阅读:
能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
㈢ 二项分布的数学期望E(X^2)怎么求
因为x服从二项分布b(n,p)
所以e(x)=np
d(x)=npq而方差d(x)=e(x^2)-[e(x)]^2,因为e(x^2)=d(x)+[e(x)]^2=npq+(np)^2=np(q+np),即e(x^2)=np(np+q)
二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
图形特点
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且:
当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
以上内容参考:网络-二项分布
㈣ 数学期望E(XY)怎么计算
如果X、Y独立,则:E(XY)=E(X)*E(Y)。
如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义。
或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)--E(X)*E(Y)。
D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)。
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。