A. 对一个数学没有任何基础的成人来说该如何学习
如果你不是以考试为目的,只是为了提高你的数学知识,以便能够在工作中能够应付乃至深入,所以你千万要记住你这个初衷。据此建议如下:
1.仅熟悉基本概念定理即可。
2.可做少量基础题来巩固,但切忌做难题,因为没必要(你并不是为了参加高考),也花费时间和精力。
3.只学与你工作密切相关,也就是工作中需要的数学知识。比如初中的平面几何、高中的立体几何,这些在你工作中不会用到的就可以完全不学。
4.大学的微积分一定要学。
5.你现在的学习一个是补基础(否则大学的微积分等看不懂),另一个是注重知识的广度,但不需要就每个知识点弄多深,这一点跟高中的学习是相反的,但这也才是工作之后正确的学习方法。
6.因为你最终是要以便更好的工作,所以根据你的描述,建议你再学一下统计学方面的教材。但是也是注重宽度,了解基本的概念公式即可。到实际需要用的时候可以随时翻书查。当然。你查的次数多了,用多了也就自然记住了。
B. 怎么学习数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授
的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化
思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联
想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互
用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成
“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新
精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问
题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看
书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
a.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
b.拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
c.建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误
原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
d.熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
e.经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
f.
阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
g.
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
h.
学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
C. 数学应该怎么学
数学应该怎么学,应该要注意的问题:
1、用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。
2、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
3、对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
4、建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
5、多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
6、要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!
D. 如何学习数学
首先一定要培养对数学学习的兴趣;其次数学学习的关键点是基础,基础很重要,一定要打好基础,否则越到后期学习起来就越困难;其次,学好数学一定要利用好课本、笔记本、错题本三个本。数学的学习是一项艰苦卓绝的工程,这中间有很多的细节需要同学们去品味和琢磨。
1.熟练掌握基本概念,基本规律和基本方法。基础不牢固,学再多知识,做再多题也没用。
2.做完题目一定要认真总结。思考这道题考的知识点是什么?以后再遇到相似的题目就会很轻松的解决。
3.举一反三。要尽可能掌握题型的多种解题方法,这样可以发散思维,培养自己的分析习惯。从而找出优解和答案。
4.分析各章节的内容,使之互相联系。要将所学知识贯穿在一起,将前后知识融会贯通,连为一体。这样能帮助我们系统深刻的理解知识体系和内容。
5.利用口诀将相近的概念和规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。使知识条理化,系统化。
6.关注重点题型。每个章节的知识点,都会有几个重点题型。只要掌握重点题型的解题方法,就能把握这一章节内容的十之八九。
7.学会对题型拆分和组合。从多角度,多方面来分析和解决典型题目,从中概括出基本规律方法。
8.上课认真听讲,做到以下三点:一,神情专注,紧跟讲课思路;二,善于做笔记;三,积极回答问题,勇于提出问题。
9.多做题。做题是巩固知识的有效方法。
10.错题本。数学的错题本尤为重要。
11.参考书上的三类题目不必做:已经完全掌握了的题目不必做,超出考试大纲的题目不必做,太偏太怪的题目不必做。
12.寒暑假一定要做好复习和预习。复习上学期的课程,把薄弱环节加强一下;预习下学期将要学习的内容。
13.想做数学学霸,要格外重视综合性强,难度大的题目,也就是试卷上末尾的一至三道大题。这是拉开你和同学分数差距的重点。
14.避免生硬的套用公式。归纳很重要,一是归纳科学的思维方法,二是归纳重要题型的解题方法。
15.不仅要熟悉知识的纵向联系,而且要熟悉知识的横向联系,逆向联系,达到信手拈来,呼之既出的程度。
E. 为什么如今很多人惧怕数学呢究竟该怎么学才能爱上数学课呢
因为很多人都认为学习数学,是一件非常困难的事情,这些人需要通过正确了解数学,才能爱上数学课。
数学对于大多数人来说,确实会感到恐惧,特别是一些文科生,还没到上数学课,就已经很害怕了,更不要说,让她去考试。在这样的情况下,很多人都是听说,然后就被吓到,心理先有了障碍,这个坎就很难迈过去。在这样的情况下,建议害怕数学的人,首先要克服自己的心理,才能去很好去接受数学。
一、为什么很多人惧怕数学?
因为数学不像其他学科,可以通过背诵就获得相应的成绩。数学需要是逻辑思维,只有彻底去理解这个题目表达是什么,然后需要运用什么样的公式,才能去解开。对此,很多人都害怕这个过程,所以就害怕数学。而有一些人,他并不是没有认真去学习数学,只是他学习方法不对,才导致他更加害怕数学。学习好数学的人,是不会惧怕数学的,你应该要向他们学习。