Ⅰ 数学史上三次危机的历史意义
第一次数学危机促成了公理咐派历几何与逻辑的诞生;第二次数学危机促成了分析基础羡樱理论的完善与集合论的创立;第三次数学危衡搜机促成了数理逻辑的发展与一批现代数学的产生.
Ⅱ 第一次数学危机是什么给数学发展带来什么
无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几瞎野何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共的量度单位的线段。由于毕氏学派关于比例定义假定了任何两个同类量是可通约的,所以毕氏学派比例理论中的所有命题都局限在可通约的量上,这样,他们的关于相似形的一般理论也失效了
这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何磨森喊学体系,这不能不说是数学思想上一次巨大革命,这也是第一春袜次数学危机的自然产物。
Ⅲ 数学史上三次危机的历史意义
三次数学危机实质上是西方数学发展过程中矛盾斗争的结果,也能看出在西方社会,数学的文化精神已经进入到西方社会,是普通民众所具有的精神。一旦当数学上的问题与社会意识发生矛盾时,便会引起全社会的争论,进而产生了社会大危机。这些危机的解决只是需要对数学的再认识,再理解,在数学内部用纯粹知识就可解决,但是它所折射出的社会文化系统的不同是需要我们中国人给予一定考虑的,为什么古代中国数学就没有这样的危机呢???
三次危机一方面促进了数学的发展,另一方面也展示了西方数学在西方社会的文化地位,以及对西方人思维意识的影响。前者只需要数学发展历程就可看出,而后者是需要我们进一步仔细思考的内容。
希望对楼主能有所帮助!!
Ⅳ 数学史上的危机带来了什么
发现无理数就导致了第一次数学危机,而危机的解决也就促使逻辑的发展和几何学的体系化。
第二次数学危机是由无穷小量的矛盾引起的,它反映了数学内部的有限与无穷的矛盾。数学中也一直贯穿着计算方法、分析方法在应用与概念上清楚及逻辑上严格的矛盾。在这方面,比较注意实用的数学家盲目应用。而比较注意严密的数学家及哲学家则提出批评。只有这两方面取得协调一致后,矛盾才能解决。后来算符演算及δ函数也重复了这个过程,开始是形式演算、任意应用,直到施瓦尔兹才奠定广义函数论的严整系统。
对于第三次数御岁学危机,有人认为只是数学基础的危机,与数学无关。这种看法是片面的。诚然,问题涉及数理逻辑和集合论,但它一开始就牵涉到橡拆者无穷集合,而现代数学如果脱离无穷集合就可以说寸步难行。因为如果只考虑有限集合或至多是可数的集合,那绝大部分数学将不复存在。而且即便这些梁薯有限数学的内容,也有许多问题要涉及无穷的方法,比如解决数论中的许多问题都要用解析方法。由此看来,第三次数学危机是一次深刻的数学危机。